scholarly journals Structure of dimeric full-length human ACE2 in complex with B0AT1

Author(s):  
Renhong Yan ◽  
Yuanyuan Zhang ◽  
Yaning Li ◽  
Lu Xia ◽  
Qiang Zhou

AbstractAngiotensin-converting enzyme 2 (ACE2) is the surface receptor for SARS coronavirus (SARS-CoV), directly interacting with the spike glycoprotein (S protein). ACE2 is also suggested to be the receptor for the new coronavirus (2019-nCoV), which is causing a serious epidemic in China manifested with severe respiratory syndrome. B0AT1 (SLC6A19) is a neutral amino acid transporter whose surface expression in intestinal cells requires ACE2. Here we present the 2.9 Å resolution cryo-EM structure of full-length human ACE2 in complex with B0AT1. The complex, assembled as a dimer of ACE2-B0AT1 heterodimers, exhibits open and closed conformations due to the shifts of the peptidase domains (PDs) of ACE2. A newly resolved Collectrin-like domain (CLD) on ACE2 mediates homo-dimerization. Structural modelling suggests that the ACE2-B0AT1 complex can bind two S proteins simultaneously, providing important clues to the molecular basis for coronavirus recognition and infection.

Author(s):  
Renhong Yan ◽  
Yuanyuan Zhang ◽  
Yingying Guo ◽  
Lu Xia ◽  
Qiang Zhou

AbstractAngiotensin-converting enzyme 2 (ACE2) has been suggested to be the cellular receptor for the new coronavirus (2019-nCoV) that is causing the coronavirus disease 2019 (COVID-19). Like other coronaviruses such as the SARS-CoV, the 2019-nCoV uses the receptor binding domain (RBD) of the surface spike glycoprotein (S protein) to engage ACE2. We most recently determined the structure of the full-length human ACE2 in complex with a neutral amino acid transporter B0AT1. Here we report the cryo-EM structure of the full-length human ACE2 bound to the RBD of the 2019-nCoV at an overall resolution of 2.9 Å in the presence of B0AT1. The local resolution at the ACE2-RBD interface is 3.5 Å, allowing analysis of the detailed interactions between the RBD and the receptor. Similar to that for the SARS-CoV, the RBD of the 2019-nCoV is recognized by the extracellular peptidase domain (PD) of ACE2 mainly through polar residues. Pairwise comparison reveals a number of variations that may determine the different affinities between ACE2 and the RBDs from these two related viruses.


Science ◽  
2020 ◽  
Vol 367 (6485) ◽  
pp. 1444-1448 ◽  
Author(s):  
Renhong Yan ◽  
Yuanyuan Zhang ◽  
Yaning Li ◽  
Lu Xia ◽  
Yingying Guo ◽  
...  

Angiotensin-converting enzyme 2 (ACE2) is the cellular receptor for severe acute respiratory syndrome–coronavirus (SARS-CoV) and the new coronavirus (SARS-CoV-2) that is causing the serious coronavirus disease 2019 (COVID-19) epidemic. Here, we present cryo–electron microscopy structures of full-length human ACE2 in the presence of the neutral amino acid transporter B0AT1 with or without the receptor binding domain (RBD) of the surface spike glycoprotein (S protein) of SARS-CoV-2, both at an overall resolution of 2.9 angstroms, with a local resolution of 3.5 angstroms at the ACE2-RBD interface. The ACE2-B0AT1 complex is assembled as a dimer of heterodimers, with the collectrin-like domain of ACE2 mediating homodimerization. The RBD is recognized by the extracellular peptidase domain of ACE2 mainly through polar residues. These findings provide important insights into the molecular basis for coronavirus recognition and infection.


2007 ◽  
Vol 81 (19) ◽  
pp. 10831-10834 ◽  
Author(s):  
Shuetsu Fukushi ◽  
Tetsuya Mizutani ◽  
Kouji Sakai ◽  
Masayuki Saijo ◽  
Fumihiro Taguchi ◽  
...  

ABSTRACT To clarify the molecular basis of severe acute respiratory syndrome coronavirus (SARS-CoV) adaptation to different host species, we serially passaged SARS-CoV in rat angiotensin-converting enzyme 2 (ACE2)-expressing cells. After 15 passages, the virus (Rat-P15) came to replicate effectively in rat ACE2-expressing cells. Two amino acid substitutions in the S2 region were found on the Rat-P15 S gene. Analyses of the infectivity of the pseudotype-bearing S protein indicated that the two substitutions in the S2 region, especially the S950F substitution, were responsible for efficient infection. Therefore, virus adaptation to different host species can be induced by amino acid substitutions in the S2 region.


2021 ◽  
Vol 22 (16) ◽  
pp. 8963
Author(s):  
Satya Prakash Shukla ◽  
Kwang Bog Cho ◽  
Vineeta Rustagi ◽  
Xiang Gao ◽  
Xinping Fu ◽  
...  

Coronavirus Disease 2019 (COVID-19) remains a global health crisis, despite the development and success of vaccines in certain countries. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, uses its spike protein to bind to the human cell surface receptor angiotensin-converting enzyme 2 (ACE2), which allows the virus to enter the human body. Using our unique cell screening technology, we identified two ACE2-binding peptoid compounds and developed dimeric derivatives (ACE2P1D1 and ACE2P2D1) that effectively blocked spike protein-ACE2 interaction, resulting in the inhibition of SARS-CoV-2 pseudovirus entry into human cells. ACE2P1D1 and ACE2P2D1 also blocked infection by a D614G mutant pseudovirus. More importantly, these compounds do not decrease ACE2 expression nor its enzyme activity (which is important in normal blood pressure regulation), suggesting safe applicability in humans


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Fei Ye ◽  
Xi Lin ◽  
Zimin Chen ◽  
Fanli Yang ◽  
Sheng Lin ◽  
...  

AbstractSARS-CoV-2 recognizes, via its spike receptor-binding domain (S-RBD), human angiotensin-converting enzyme 2 (ACE2) to initiate infection. Ecto-domain protein of ACE2 can therefore function as a decoy. Here we show that mutations of S19W, T27W, and N330Y in ACE2 could individually enhance SARS-CoV-2 S-RBD binding. Y330 could be synergistically combined with either W19 or W27, whereas W19 and W27 are mutually unbeneficial. The structures of SARS-CoV-2 S-RBD bound to the ACE2 mutants reveal that the enhanced binding is mainly contributed by the van der Waals interactions mediated by the aromatic side-chains from W19, W27, and Y330. While Y330 and W19/W27 are distantly located and devoid of any steric interference, W19 and W27 are shown to orient their side-chains toward each other and to cause steric conflicts, explaining their incompatibility. Finally, using pseudotyped SARS-CoV-2 viruses, we demonstrate that these residue substitutions are associated with dramatically improved entry-inhibition efficacy toward both wild-type and antibody-resistant viruses. Taken together, our biochemical and structural data have delineated the basis for the elevated S-RBD binding associated with S19W, T27W, and N330Y mutations in ACE2, paving the way for potential application of these mutants in clinical treatment of COVID-19.


2021 ◽  
Author(s):  
Marta Alenquer ◽  
Filipe Ferreira ◽  
Diana Lousa ◽  
Mariana Valério ◽  
Mónica Medina-Lopes ◽  
...  

AbstractUnderstanding SARS-CoV-2 evolution and host immunity is critical to control COVID-19 pandemics. At the core is an arms-race between SARS-CoV-2 antibody and angiotensin-converting enzyme 2 (ACE2) recognition, a function of the viral protein spike and, predominantly, of its receptor-binding-domain (RBD). Mutations in spike impacting antibody or ACE2 binding are known, but the effect of mutation synergy is less explored. We engineered 22 spike-pseudotyped lentiviruses containing individual and combined mutations, and confirmed that E484K evades antibody neutralization elicited by infection or vaccination, a capacity augmented when complemented by K417N and N501Y mutations. In silico analysis provided an explanation for E484K immune evasion. E484 frequently engages in interactions with antibodies but not with ACE2. Importantly, we identified a novel amino acid of concern, S494, which shares a similar pattern. Using the already circulating mutation S494P, we found that it reduces antibody neutralization of convalescent sera. This amino acid emerges as an additional hotspot for immune evasion and a target for therapies, vaccines and diagnostics.One-Sentence SummaryAmino acids in SARS-CoV-2 spike protein implicated in immune evasion are biased for binding to neutralizing antibodies but dispensable for binding the host receptor angiotensin-converting enzyme 2.


2020 ◽  
Author(s):  
Ye Qiu ◽  
Qiong Wang ◽  
Jin-Yan Li ◽  
Ce-Heng Liao ◽  
Zhi-Jian Zhou ◽  
...  

AbstractCoronavirus pandemics have become a huge threat to the public health worldwide in the recent decades. Typically, SARS-CoV caused SARS pandemic in 2003 and SARS-CoV-2 caused the COVID-19 pandemic recently. Both viruses have been reported to originate from bats. Thus, direct or indirect interspecies transmission from bats to humans is required for the viruses to cause pandemics. Receptor utilization is a key factor determining the host range of viruses which is critical to the interspecies transmission. Angiotensin converting enzyme 2 (ACE2) is the receptor of both SARS-CoV and SARS-CoV-2, but only ACE2s of certain animals can be utilized by the viruses. Here, we employed pseudovirus cell-entry assay to evaluate the receptor-utilizing capability of ACE2s of 20 animals by the two viruses and found that SARS-CoV-2 utilized less ACE2s than SARS-CoV, indicating a narrower host range of SARS-CoV-2. Meanwhile, pangolin CoV, another SARS-related coronavirus highly homologous to SARS-CoV-2 in its genome, yet showed similar ACE2 utilization profile with SARS-CoV rather than SARS-CoV-2. To clarify the mechanism underlying the receptor utilization, we compared the amino acid sequences of the 20 ACE2s and found 5 amino acid residues potentially critical for ACE2 utilization, including the N-terminal 20th and 42nd amino acids that may determine the different receptor utilization of SARS-CoV, SARS-CoV-2 and pangolin CoV. Our studies promote the understanding of receptor utilization of pandemic coronaviruses, potentially contributing to the virus tracing, intermediate host screening and epidemic prevention for pathogenic coronaviruses.


2020 ◽  
Vol 21 (24) ◽  
pp. 9602
Author(s):  
Rafael Franco ◽  
Alejandro Lillo ◽  
Rafael Rivas-Santisteban ◽  
Ana I. Rodríguez-Pérez ◽  
Irene Reyes-Resina ◽  
...  

Angiotensin-converting enzyme 2 (ACE2) is a membrane peptidase and a component of the renin-angiotensin system (RAS) that has been found in cells of all organs, including the lungs. While ACE2 has been identified as the receptor for severe acute respiratory syndrome (SARS) coronaviruses, the mechanism underlying cell entry remains unknown. Human immunodeficiency virus infects target cells via CXC chemokine receptor 4 (CXCR4)-mediated endocytosis. Furthermore, CXCR4 interacts with dipeptidyl peptidase-4 (CD26/DPPIV), an enzyme that cleaves CXCL12/SDF-1, which is the chemokine that activates this receptor. By analogy, we hypothesized that ACE2 might also be capable of interactions with RAS-associated G-protein coupled receptors. Using resonance energy transfer and cAMP and mitogen-activated protein kinase signaling assays, we found that human ACE2 interacts with RAS-related receptors, namely the angiotensin II type 1 receptor (AT1R), the angiotensin II type 2 receptor (AT2R), and the MAS1 oncogene receptor (MasR). Although these interactions led to various alterations of signal transduction, but, more importantly, ligand binding to AT1R resulted in the downregulation of ACE2 cell surface expression, while ligand binding to AT2R, but not to MasR, resulted in upregulation of ACE2 cell surface expression. Proximity ligation assays performed in situ revealed macromolecular complexes containing ACE2 and AT1R, AT2R or MasR in adult but not fetal mouse lung tissue. These findings highlight the relevance of RAS in SARS-CoV-2 infection and the role of ACE2-containing complexes as potential therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document