scholarly journals Whole genome assembly of Culex tarsalis

2020 ◽  
Author(s):  
Bradley J. Main ◽  
Matteo Marcantonio ◽  
J. Spencer Johnston ◽  
Jason L. Rasgon ◽  
C. Titus Brown ◽  
...  

AbstractThe mosquito, Culex tarsalis, is a key vector in the western United States due to its role in transmission of zoonotic arboviruses that affect human health. Extensive research has been conducted on Cx. tarsalis ecology, feeding behavior, vector competence, autogeny, diapause, genetics, and insecticide resistance. Population genetic analyses in the western U.S. have identified at least three genetic clusters that are geographically distinct. Salivary gland-specific gene expression has also revealed genes involved in blood feeding. However, genetic studies of this mosquito have been hindered by the lack of a reference genome. To facilitate genomic studies in Cx. tarsalis, we have assembled and annotated a reference genome (CtarK1) based on PacBio HiFi reads from a single male. Using the Cx. tarsalis transcriptome and protein sequences from Culex quinquefasciatus, approximately 17,456 protein-coding genes, including the para insecticide resistance gene, were annotated in the CtarK1 genome. Genome completeness was assessed using the Benchmarking Universal Single-Copy Orthologs (BUSCO) tool, which identified 84.8% of the 2799 Dipteran BUSCO genes. The CtarK1 assembly is 790Mb with an N50 of 58kb. Using full mitochondrial genome alignments with other sequenced mosquito genomes we present a Bayesian phylogeny, which estimates that the divergence of Cx. tarsalis from Culex quinquefasciatus, the most closely related mosquito species with a genome, occurred 15.8-22.2 million years ago.

2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Bradley J Main ◽  
Matteo Marcantonio ◽  
J Spencer Johnston ◽  
Jason L Rasgon ◽  
C Titus Brown ◽  
...  

Abstract The mosquito, Culex tarsalis, is a key vector in the western United States due to its role in transmission of zoonotic arboviruses that affect human health. Extensive research has been conducted on Cx. tarsalis ecology, feeding behavior, vector competence, autogeny, diapause, genetics, and insecticide resistance. Population genetic analyses in the western U.S. have identified at least three genetic clusters that are geographically distinct. However, in-depth genetic studies have been hindered by the lack of a reference genome. In this study, we present the first whole-genome assembly of this mosquito species (CtarK1) based on PacBio HiFi reads from high-molecular-weight DNA extracted from a single male. The CtarK1 assembly is 790 Mb with an N50 of 58 kb, which is 27% larger than Culex quinquefasciatus (578 Mb). This difference appears to be mostly composed of transposable elements. To annotate CtarK1, we used a previously assembled Cx. tarsalis transcriptome and approximately 17,456 protein genes from Cx. quinquefasciatus (N = 17,456). Genome completeness was assessed using the Benchmarking Universal Single-Copy Orthologs (BUSCO) tool, which identified 84.8% of the 2799 Dipteran BUSCO genes. Using a Bayesian phylogeny based on mitochondrial genomes, we place Cx. tarsalis in the context of other mosquito species and estimate the divergence between Cx. tarsalis and Cx. quinquefasciatus to be between 15.8 and 22.2 million years ago (MYA). Important next steps from this work include characterizing the genetic basis of diapause and sex determination in Culex mosquitoes.


2019 ◽  
Vol 286 (1894) ◽  
pp. 20182273 ◽  
Author(s):  
Célestine M. Atyame ◽  
Haoues Alout ◽  
Laurence Mousson ◽  
Marie Vazeille ◽  
Mawlouth Diallo ◽  
...  

Insecticide resistance has been reported to impact the interactions between mosquitoes and the pathogens they transmit. However, the effect on vector competence for arboviruses still remained to be investigated. We examined the influence of two insecticide resistance mechanisms on vector competence of the mosquito Culex quinquefasciatus for two arboviruses, Rift Valley Fever virus (RVFV) and West Nile virus (WNV). Three Cx. quinquefasciatus lines sharing a common genetic background were used: two insecticide-resistant lines, one homozygous for amplification of the Ester 2 locus (SA2), the other homozygous for the acetylcholinesterase ace-1 G119S mutation (SR) and the insecticide-susceptible reference line Slab. Statistical analyses revealed no significant effect of insecticide-resistant mechanisms on vector competence for RVFV. However, both insecticide resistance mechanisms significantly influenced the outcome of WNV infections by increasing the dissemination of WNV in the mosquito body, therefore leading to an increase in transmission efficiency by resistant mosquitoes. These results showed that insecticide resistance mechanisms enhanced vector competence for WNV and may have a significant impact on transmission dynamics of arboviruses. Our findings highlight the importance of understanding the impacts of insecticide resistance on the vectorial capacity parameters to assess the overall consequence on transmission.


2018 ◽  
Author(s):  
Marco Brustolin ◽  
Sujit Pujhari ◽  
Cory A. Henderson ◽  
Jason L. Rasgon

AbstractThe Togavirus (Alphavirus) Mayaro virus (MAYV) was initially described in 1954 from Mayaro County (Trinidad) and has been responsible for outbreaks in South America and the Caribbean. Imported MAYV cases are on the rise, leading to invasion concerns similar to Chikungunya and Zika viruses. Little is known about the range of mosquito species that are competent MAYV vectors. We tested vector competence of 2 MAYV genotypes for six mosquito species (Aedes aegypti, Anopheles gambiae, An. stephensi, An. quadrimaculatus, An. freeborni, Culex quinquefasciatus). Ae. aegypti and Cx. quinquefasciatus were poor MAYV vectors, and either were poorly infected or poorly transmitted. In contrast, all Anopheles species were able to transmit MAYV, and 3 of the 4 species transmitted both genotypes. The Anopheles species tested are divergent and native to widely separated geographic regions, suggesting that Anopheles may be important in the invasion and spread of MAYV across diverse regions of the world.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 226
Author(s):  
Bethany L. McGregor ◽  
C. Roxanne Connelly ◽  
Joan L. Kenney

Oropouche virus (OROV), a vector-borne Orthobunyavirus circulating in South and Central America, causes a febrile illness with high rates of morbidity but with no documented fatalities. Oropouche virus is transmitted by numerous vectors, including multiple genera of mosquitoes and Culicoides biting midges in South America. This study investigated the vector competence of three North American vectors, Culex tarsalis, Culex quinquefasciatus, and Culicoides sonorensis, for OROV. Cohorts of each species were fed an infectious blood meal containing 6.5 log10 PFU/mL OROV and incubated for 10 or 14 days. Culex tarsalis demonstrated infection (3.13%) but not dissemination or transmission potential at 10 days post infection (DPI). At 10 and 14 DPI, Cx. quinquefasciatus demonstrated 9.71% and 19.3% infection, 2.91% and 1.23% dissemination, and 0.97% and 0.82% transmission potential, respectively. Culicoides sonorensis demonstrated 86.63% infection, 83.14% dissemination, and 19.77% transmission potential at 14 DPI. Based on these data, Cx. tarsalis is unlikely to be a competent vector for OROV. Culex quinquefasciatus demonstrated infection, dissemination, and transmission potential, although at relatively low rates. Culicoides sonorensis demonstrated high infection and dissemination but may have a salivary gland barrier to the virus. These data have implications for the spread of OROV in the event of a North American introduction.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3096 ◽  
Author(s):  
Brittany L. Dodson ◽  
Jason L. Rasgon

Zika virus is a newly emergent mosquito-borne flavivirus that has caused recent large outbreaks in the new world, leading to dramatic increases in serious disease pathology including Guillain-Barre syndrome, newborn microcephaly, and infant brain damage. AlthoughAedesmosquitoes are thought to be the primary mosquito species driving infection, the virus has been isolated from dozens of mosquito species, includingCulexandAnophelesspecies, and we lack a thorough understanding of which mosquito species to target for vector control. We exposedAnopheles gambiae,Anopheles stephensi, andCulex quinquefasciatusmosquitoes to blood meals supplemented with two Zika virus strains. Mosquito bodies, legs, and saliva were collected five, seven, and 14 days post blood meal and tested for infectious virus by plaque assay. Regardless of titer, virus strain, or timepoint,Anopheles gambiae,Anopheles stephensi, andCulex quinquefasciatusmosquitoes were refractory to Zika virus infection. We conclude thatAnopheles gambiae,Anopheles stephensi, andCulex quinquefasciatusmosquitoes likely do not contribute significantly to Zika virus transmission to humans. However, future studies should continue to explore the potential for other novel potential vectors to transmit the virus.


2020 ◽  
Author(s):  
Yuan Fang ◽  
Tambo Ernest ◽  
Jing-Bo Xue ◽  
Yi Zhang ◽  
Xiao-Nong Zhou ◽  
...  

Abstract Background: Gene mutations on target sites can be a valuable reference to the status of insecticide resistance. Jeddah, a global commercial and major port-of-entry city, is bearing the most (>70%) dengue disease burden and the population of the dengue vector Aedes aegypti (Linnaeus, 1762) in Saudi Arabia. Culex quinquefasciatus Say, 1823 is a second example as one of the major arboviral vectors in the region. However, the status of insecticide resistance and targeted site mutations on the responsible genes are not fully characterized.Methods: We randomly sampled both mosquito species, Ae. aegypti (25 individuals) and Cx. quinquefasciatus (24 individuals) across Jeddah by daily mosquito surveillance in 2016 to detect the resistance-associated target site mutations on the voltage gated sodium channel (VGSC) and acetylcholinesterase 1 (ace-1) genes by PCR amplification and direct sequencing. Results: Our findings showed that Ae. aegypti resistance-associated VGSC gene mutations revealed polymorphic mutations on the 989, 1016, and 1534 sites. Additionally, we documented two types of introns between exons 20 and 21, however, the I1011M point mutation was undetected. Linkage disequilibrium associations were shown between V1016G with S989P, V1016G with F1534, and V1016G with type A intron. Furthermore, no mutation on ace-1 was identified in Ae. aegypti. In Cx. quinquefasciatus, homozygous L1014F/L1014F (95.23%) on the VGSC and heterozygous G119/G119S (100%) on ace-1 were widely distributed in the samples studied. Analysis of intron sequences obtained in our study and homologous sequences retrieved from GenBank showed that the intron type was significantly associated with 1016 (P = 0.000) allele type, and may reflect the history of insecticide treatment in different continents.Conclusions: To the best of our knowledge, this is the first record of the intron types between exons 20 and 21 on VGSC of Ae. aegypti populations. It can serve as a reference marker to evaluate the local insecticide resistance status. In addition, the first report of insecticide resistance gene mutation being present in field caught Cx. quinquefasciatus in Saudi Arabia. High prevalence of insecticide resistance gene mutations in local primary mosquito vector species alert the urgent need to carry out a comprehensive insecticide resistance surveillance.


2020 ◽  
Author(s):  
Yuan Fang ◽  
Tambo Ernest ◽  
Jing-Bo Xue ◽  
Yi Zhang ◽  
Hany A. Kamal ◽  
...  

Abstract Background: Gene mutations on target sites can be a valuable reference to the status of insecticide resistance. Jeddah, a global commercial and major port-of-entry city, is bearing the most (>70%) dengue disease burden and the population of the dengue vector Aedes aegypti in Saudi Arabia. Culex quinquefasciatus is a second example as one of the major arboviral vectors in the region. However, the status of insecticide resistance and targeted site mutations on the responsible genes are not fully characterized.Methods: We randomly sampled both mosquito species, Ae. aegypti and Cx. quinquefasciatus across Jeddah by daily mosquito surveillance in 2016 to detect the resistance-associated target site mutations on the voltage gated sodium channel (VGSC) and acetylcholinesterase 1 (ace-1) genes. Results: Our findings showed that Ae. aegypti resistance-associated VGSC gene mutations revealed polymorphic mutations on the 989, 1016, and 1534 sites. Additionally, we documented two types of introns between exons 20 and 21, however, the I1011M point mutation was undetected. Linkage disequilibrium associations were shown between V1016G with S989P, V1016G with F1534, and V1016G with type A intron. Furthermore, no mutation on ace-1 was identified in Ae. aegypti. In Cx. quinquefasciatus, homozygous L1014F/L1014F (95.23%) on the VGSC and heterozygous G119/G119S (100%) on ace-1 were widely distributed in the samples studied. Analysis of intron sequences obtained in our study and homologous sequences retrieved from GenBank showed that the intron type was significantly associated with 1016 (P = 0.000) allele type, and may reflect the history of insecticide treatment in different continents.Conclusions: To the best of our knowledge, this is the first record of the intron types between exons 20 and 21 on VGSC of Ae. aegypti populations, and the first report of insecticide resistance gene mutation being present in field caught Cx. quinquefasciatus in Jeddah, Saudi Arabia. High prevalence of insecticide resistance gene mutations in local primary mosquito vector species alert the urgent need to carry out a comprehensive insecticide resistance gene mutation surveillance and monitoring to guide sustained and effective integrated vector management planning and innovative guidelines in local predominate mosquito populations and mosquito-borne disease control and elimination in Saudi Arabia.


2018 ◽  
Vol 12 (6) ◽  
pp. e0006524 ◽  
Author(s):  
Bradley J. Main ◽  
Jay Nicholson ◽  
Olivia C. Winokur ◽  
Cody Steiner ◽  
Kasen K. Riemersma ◽  
...  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4324 ◽  
Author(s):  
Brittany L. Dodson ◽  
Sujit Pujhari ◽  
Jason L. Rasgon

Zika virus (ZIKV) is a vector-borne flavivirus that has caused recent outbreaks associated with serious disease in infants and newborns in the Americas.Aedesmosquitoes are the primary vectors for ZIKV, but little is known about the diversity of mosquitoes that can transmit ZIKV in North America. We chose three abundant North American mosquito species (Anopheles freeborni,Anopheles quadrimaculatus, andCulex tarsalis) and one known vector species (Aedes aegypti), fed them blood meals supplemented with a recent outbreak ZIKV strain, and tested bodies, legs, and saliva for infectious ZIKV. ZIKV was able to infect, disseminate, and be transmitted byAedes aegypti. However,Anopheles freeborni,Anopheles quadrimaculatus, andCulex tarsaliswere unable to be infected. We conclude that these species are unlikely to be involved in ZIKV transmission in North America. However, we should continue to examine the ability for other mosquito species to potentially act as ZIKV vectors in North America.


Sign in / Sign up

Export Citation Format

Share Document