scholarly journals Arabidopsis REI-LIKE proteins activate ribosome biogenesis during cold acclimation

Author(s):  
Bo Eng Cheong ◽  
Olga Beine-Golovchuk ◽  
Michal Gorka ◽  
William Wing Ho Ho ◽  
Federico Martinez-Seidel ◽  
...  

AbstractArabidopsis REIL proteins are cytosolic ribosomal 60S-biogenesis factors. After shift to 10°C, reil mutants deplete and slowly replenish non-translating eukaryotic ribosome complexes of root tissue, while tightly controlling the balance of non-translating 40S- and 60S-subunits. Reil mutations compensate by hyper-accumulation of non-translating subunits at steady-state temperature; after cold-shift, a KCl-sensitive 80S sub-fraction remains depleted. We infer that Arabidopsis buffers fluctuating translation by pre-existing non-translating ribosomes before de novo synthesis meets temperature-induced demands. Reil1 reil2 double mutants accumulate 43S-preinitiation and pre-60S-maturation complexes and have altered paralog composition of ribosomal proteins in non-translating complexes. With few exceptions, e.g. RPL3B and RPL24C, these changes are not under transcriptional control. Our study suggests requirement of de novo synthesis of eukaryotic ribosomes for long-term cold acclimation, feedback control of NUC2 and eIF3C2 transcription and links new proteins, AT1G03250, AT5G60530, to plant ribosome biogenesis. We propose that Arabidopsis requires biosynthesis of specialized ribosomes for cold acclimation.Highlight of this studyREIL proteins affect paralog composition of eukaryotic ribosomes and suppress accumulation of 43S-preinitiation and pre-60S-maturation complexes, suggesting functions of ribosome heterogeneity and biogenesis in plant cold acclimation.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bo Eng Cheong ◽  
Olga Beine-Golovchuk ◽  
Michal Gorka ◽  
William Wing Ho Ho ◽  
Federico Martinez-Seidel ◽  
...  

AbstractArabidopsis REIL proteins are cytosolic ribosomal 60S-biogenesis factors. After shift to 10 °C, reil mutants deplete and slowly replenish non-translating eukaryotic ribosome complexes of root tissue, while controlling the balance of non-translating 40S- and 60S-subunits. Reil mutations respond by hyper-accumulation of non-translating subunits at steady-state temperature; after cold-shift, a KCl-sensitive 80S sub-fraction remains depleted. We infer that Arabidopsis may buffer fluctuating translation by pre-existing non-translating ribosomes before de novo synthesis meets temperature-induced demands. Reil1 reil2 double mutants accumulate 43S-preinitiation and pre-60S-maturation complexes and alter paralog composition of ribosomal proteins in non-translating complexes. With few exceptions, e.g. RPL3B and RPL24C, these changes are not under transcriptional control. Our study suggests requirement of de novo synthesis of eukaryotic ribosomes for long-term cold acclimation, feedback control of NUC2 and eIF3C2 transcription and links new proteins, AT1G03250, AT5G60530, to plant ribosome biogenesis. We propose that Arabidopsis requires biosynthesis of specialized ribosomes for cold acclimation.


2020 ◽  
Author(s):  
Olga Rodríguez-Galán ◽  
Juan J García-Gómez ◽  
Iván V Rosado ◽  
Wu Wei ◽  
Alfonso Méndez-Godoy ◽  
...  

Abstract Proteostasis needs to be tightly controlled to meet the cellular demand for correctly de novo folded proteins and to avoid protein aggregation. While a coupling between translation rate and co-translational folding, likely involving an interplay between the ribosome and its associated chaperones, clearly appears to exist, the underlying mechanisms and the contribution of ribosomal proteins remain to be explored. The ribosomal protein uL3 contains a long internal loop whose tip region is in close proximity to the ribosomal peptidyl transferase center. Intriguingly, the rpl3[W255C] allele, in which the residue making the closest contact to this catalytic site is mutated, affects diverse aspects of ribosome biogenesis and function. Here, we have uncovered, by performing a synthetic lethal screen with this allele, an unexpected link between translation and the folding of nascent proteins by the ribosome-associated Ssb-RAC chaperone system. Our results reveal that uL3 and Ssb-RAC cooperate to prevent 80S ribosomes from piling up within the 5′ region of mRNAs early on during translation elongation. Together, our study provides compelling in vivo evidence for a functional connection between peptide bond formation at the peptidyl transferase center and chaperone-assisted de novo folding of nascent polypeptides at the solvent-side of the peptide exit tunnel.


Author(s):  
David Shore ◽  
Sevil Zencir ◽  
Benjamin Albert

Ribosome biogenesis requires prodigious transcriptional output in rapidly growing yeast cells and is highly regulated in response to both growth and stress signals. This minireview focuses on recent developments in our understanding of this regulatory process, with an emphasis on the 138 ribosomal protein genes (RPGs) themselves and a group of >200 ribosome biogenesis (RiBi) genes whose products contribute to assembly but are not part of the ribosome. Expression of most RPGs depends upon Rap1, a pioneer transcription factor (TF) required for the binding of a pair of RPG-specific TFs called Fhl1 and Ifh1. RPG expression is correlated with Ifh1 promoter binding, whereas Rap1 and Fhl1 remain promoter-associated upon stress-induced down regulation. A TF called Sfp1 has also been implicated in RPG regulation, though recent work reveals that its primary function is in activation of RiBi and other growth-related genes. Sfp1 plays an important regulatory role at a small number of RPGs where Rap1–Fhl1–Ifh1 action is subsidiary or non-existent. In addition, nearly half of all RPGs are bound by Hmo1, which either stabilizes or re-configures Fhl1–Ifh1 binding. Recent studies identified the proline rotamase Fpr1, known primarily for its role in rapamycin-mediated inhibition of the TORC1 kinase, as an additional TF at RPG promoters. Fpr1 also affects Fhl1–Ifh1 binding, either independently or in cooperation with Hmo1. Finally, a major recent development was the discovery of a protein homeostasis mechanism driven by unassembled ribosomal proteins, referred to as the Ribosome Assembly Stress Response (RASTR), that controls RPG transcription through the reversible condensation of Ifh1.


2018 ◽  
Author(s):  
Michael Chevalier ◽  
Mariana Gómez-Schiavon ◽  
Andrew Ng ◽  
Hana El-Samad

SummaryThe ability of cells to regulate their function through feedback control is a fundamental underpinning of life. The capability to engineer de novo feedback control with biological molecules is ushering in an era of robust functionality for many applications in biotechnology and medicine. To fulfill their potential, feedback control strategies implemented with biological molecules need to be generalizable, modular and operationally predictable. Proportional-Integral-Derivative (PID) control fulfills this role for technological systems and is a commonly used strategy in engineering. Integral feedback control allows a system to return to an invariant steady-state value after step disturbances, hence enabling its robust operation. Proportional and derivative feedback control used with integral control help sculpt the dynamics of the return to steady-state following perturbation. Recently, a biomolecular implementation of integral control was proposed based on an antithetic motif in which two molecules interact stoichiometrically to annihilate each other’s function. In this work, we report how proportional and derivative implementations can be layered on top of this integral architecture to achieve a biochemical PID control design. We illustrate through computational and analytical treatments that the addition of proportional and derivative control improves performance, and discuss practical biomolecular implementations of these control strategies.


2019 ◽  
Vol 39 (17) ◽  
Author(s):  
Joshua J. Black ◽  
Sharmishtha Musalgaonkar ◽  
Arlen W. Johnson

ABSTRACT Eukaryotic ribosome biogenesis requires the action of approximately 200 trans-acting factors and the incorporation of 79 ribosomal proteins (RPs). The delivery of RPs to preribosomes is a major challenge for the cell because RPs are often highly basic and contain intrinsically disordered regions prone to nonspecific interactions and aggregation. To counteract this, eukaryotes developed dedicated chaperones for certain RPs that promote their solubility and expression, often by binding eukaryote-specific extensions of the RPs. Rps2 (uS5) is a universally conserved RP that assembles into nuclear pre-40S subunits. However, a chaperone for Rps2 had not been identified. Our laboratory previously characterized Tsr4 as a 40S biogenesis factor of unknown function. Here, we report that Tsr4 cotranslationally associates with Rps2. Rps2 harbors a eukaryote-specific N-terminal extension that is critical for its interaction with Tsr4. Moreover, Tsr4 perturbation resulted in decreased Rps2 levels and phenocopied Rps2 depletion. Despite Rps2 joining nuclear pre-40S particles, Tsr4 appears to be restricted to the cytoplasm. Thus, we conclude that Tsr4 is a cytoplasmic chaperone dedicated to Rps2.


2019 ◽  
Author(s):  
Joshua J. Black ◽  
Sharmishtha Musalgaonkar ◽  
Arlen W. Johnson

AbstractEukaryotic ribosome biogenesis requires the action of approximately 200 trans-acting factors and the incorporation of 79 ribosomal proteins (RPs). The delivery of RPs to pre-ribosomes is a major challenge for the cell because RPs are often highly basic and contain intrinsically disordered regions prone to nonspecific interactions and aggregation. To counteract this, eukaryotes developed dedicated chaperones for certain RPs that promote their solubility and expression, often by binding eukaryotic-specific extensions of the RPs. Rps2 (uS5) is a universally conserved RP that assembles into nuclear pre-40S subunits. However, a chaperone for Rps2 had not been identified. Our lab previously characterized Tsr4 as a 40S biogenesis factor of unknown function. Here, we report that Tsr4 co-translationally associates with Rps2. Rps2 harbors a eukaryotic-specific N-terminal extension that was critical for its interaction with Tsr4. Moreover, Tsr4 perturbation resulted in decreased Rps2 levels and phenocopied Rps2 depletion. Despite Rps2 joining nuclear pre-40S particles, Tsr4 appeared to be restricted to the cytoplasmic. Thus, we conclude that Tsr4 is a cytoplasmic chaperone dedicated to Rps2.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mehmet Birikmen ◽  
Katherine E. Bohnsack ◽  
Vinh Tran ◽  
Sharvari Somayaji ◽  
Markus T. Bohnsack ◽  
...  

Ribosome assembly is an essential and carefully choreographed cellular process. In eukaryotes, several 100 proteins, distributed across the nucleolus, nucleus, and cytoplasm, co-ordinate the step-wise assembly of four ribosomal RNAs (rRNAs) and approximately 80 ribosomal proteins (RPs) into the mature ribosomal subunits. Due to the inherent complexity of the assembly process, functional studies identifying ribosome biogenesis factors and, more importantly, their precise functions and interplay are confined to a few and very well-established model organisms. Although best characterized in yeast (Saccharomyces cerevisiae), emerging links to disease and the discovery of additional layers of regulation have recently encouraged deeper analysis of the pathway in human cells. In archaea, ribosome biogenesis is less well-understood. However, their simpler sub-cellular structure should allow a less elaborated assembly procedure, potentially providing insights into the functional essentials of ribosome biogenesis that evolved long before the diversification of archaea and eukaryotes. Here, we use a comprehensive phylogenetic profiling setup, integrating targeted ortholog searches with automated scoring of protein domain architecture similarities and an assessment of when search sensitivity becomes limiting, to trace 301 curated eukaryotic ribosome biogenesis factors across 982 taxa spanning the tree of life and including 727 archaea. We show that both factor loss and lineage-specific modifications of factor function modulate ribosome biogenesis, and we highlight that limited sensitivity of the ortholog search can confound evolutionary conclusions. Projecting into the archaeal domain, we find that only few factors are consistently present across the analyzed taxa, and lineage-specific loss is common. While members of the Asgard group are not special with respect to their inventory of ribosome biogenesis factors (RBFs), they unite the highest number of orthologs to eukaryotic RBFs in one taxon. Using large ribosomal subunit maturation as an example, we demonstrate that archaea pursue a simplified version of the corresponding steps in eukaryotes. Much of the complexity of this process evolved on the eukaryotic lineage by the duplication of ribosomal proteins and their subsequent functional diversification into ribosome biogenesis factors. This highlights that studying ribosome biogenesis in archaea provides fundamental information also for understanding the process in eukaryotes.


Author(s):  
R.A. Milligan ◽  
P.N.T. Unwin

A detailed understanding of the mechanism of protein synthesis will ultimately depend on knowledge of the native structure of the ribosome. Towards this end we have investigated the low resolution structure of the eukaryotic ribosome embedded in frozen buffer, making use of a system in which the ribosomes crystallize naturally.The ribosomes in the cells of early chicken embryos form crystalline arrays when the embryos are cooled at 4°C. We have developed methods to isolate the stable unit of these arrays, the ribosome tetramer, and have determined conditions for the growth of two-dimensional crystals in vitro, Analysis of the proteins in the crystals by 2-D gel electrophoresis demonstrates the presence of all ribosomal proteins normally found in polysomes. There are in addition, four proteins which may facilitate crystallization. The crystals are built from two oppositely facing P4 layers and the predominant crystal form, accounting for >80% of the crystals, has the tetragonal space group P4212, X-ray diffraction of crystal pellets demonstrates that crystalline order extends to ~ 60Å.


2020 ◽  
Vol 133 (3) ◽  
pp. 758-764
Author(s):  
Eung Koo Yeon ◽  
Young Dae Cho ◽  
Dong Hyun Yoo ◽  
Su Hwan Lee ◽  
Hyun-Seung Kang ◽  
...  

OBJECTIVEThe authors conducted a study to ascertain the long-term durability of coiled aneurysms completely occluded at 36 months’ follow-up given the potential for delayed recanalization.METHODSIn this retrospective review, the authors examined 299 patients with 339 aneurysms, all shown to be completely occluded at 36 months on follow-up images obtained between 2011 and 2013. Medical records and radiological data acquired during the extended monitoring period (mean 74.3 ± 22.5 months) were retrieved, and the authors analyzed the incidence of (including mean annual risk) and risk factors for delayed recanalization.RESULTSA total of 5 coiled aneurysms (1.5%) occluded completely at 36 months showed recanalization (0.46% per aneurysm-year) during the long-term surveillance period (1081.9 aneurysm-years), 2 surfacing within 60 months and 3 developing thereafter. Four showed minor recanalization, with only one instance of major recanalization. The latter involved the posterior communicating artery as an apparent de novo lesion, arising at the neck of a firmly coiled sac, and was unrelated to coil compaction or growth. Additional embolization was undertaken. In a multivariate analysis, a second embolization for a recurrent aneurysm (HR = 22.088, p = 0.003) independently correlated with delayed recanalization.CONCLUSIONSAlmost all coiled aneurysms (98.5%) showing complete occlusion at 36 months postembolization proved to be stable during extended observation. However, recurrent aneurysms were predisposed to delayed recanalization. Given the low probability yet seriousness of delayed recanalization and the possibility of de novo aneurysm formation, careful monitoring may be still considered in this setting but at less frequent intervals beyond 36 months.


Hematology ◽  
2017 ◽  
Vol 2017 (1) ◽  
pp. 242-250 ◽  
Author(s):  
Lisa J. McReynolds ◽  
Sharon A. Savage

Abstract The clinical manifestations of inherited susceptibility to leukemia encompass a wide phenotypic range, including patients with certain congenital anomalies or early-onset myelodysplastic syndrome (MDS) and some with no obvious medical problems until they develop leukemia. Leukemia susceptibility syndromes occur as a result of autosomal dominant, autosomal recessive, or X-linked recessive inheritance, or de novo occurrence, of germline pathogenic variants in DNA repair, ribosome biogenesis, telomere biology, hematopoietic transcription factors, tumor suppressors, and other critical cellular processes. Children and adults with cytopenias, MDS, dysmorphic features, notable infectious histories, immunodeficiency, certain dermatologic findings, lymphedema, unusual sensitivity to radiation or chemotherapy, or acute leukemia with a family history of early-onset cancer, pulmonary fibrosis, or alveolar proteinosis should be thoroughly evaluated for a leukemia susceptibility syndrome. Genetic testing and other diagnostic modalities have improved our ability to identify these patients and to counsel them and their family members for subsequent disease risk, cancer surveillance, and therapeutic interventions. Herein, the leukemia susceptibility syndromes are divided into 3 groups: (1) those associated with an underlying inherited bone marrow failure syndrome, (2) disorders in which MDS precedes leukemia development, and (3) those with a risk primarily of leukemia. Although children are the focus of this review, it is important for clinicians to recognize that inherited susceptibility to cancer can present at any age, even in older adults; genetic counseling is essential and prompt referral to experts in each syndrome is strongly recommended.


Sign in / Sign up

Export Citation Format

Share Document