scholarly journals Tracing Eukaryotic Ribosome Biogenesis Factors Into the Archaeal Domain Sheds Light on the Evolution of Functional Complexity

2021 ◽  
Vol 12 ◽  
Author(s):  
Mehmet Birikmen ◽  
Katherine E. Bohnsack ◽  
Vinh Tran ◽  
Sharvari Somayaji ◽  
Markus T. Bohnsack ◽  
...  

Ribosome assembly is an essential and carefully choreographed cellular process. In eukaryotes, several 100 proteins, distributed across the nucleolus, nucleus, and cytoplasm, co-ordinate the step-wise assembly of four ribosomal RNAs (rRNAs) and approximately 80 ribosomal proteins (RPs) into the mature ribosomal subunits. Due to the inherent complexity of the assembly process, functional studies identifying ribosome biogenesis factors and, more importantly, their precise functions and interplay are confined to a few and very well-established model organisms. Although best characterized in yeast (Saccharomyces cerevisiae), emerging links to disease and the discovery of additional layers of regulation have recently encouraged deeper analysis of the pathway in human cells. In archaea, ribosome biogenesis is less well-understood. However, their simpler sub-cellular structure should allow a less elaborated assembly procedure, potentially providing insights into the functional essentials of ribosome biogenesis that evolved long before the diversification of archaea and eukaryotes. Here, we use a comprehensive phylogenetic profiling setup, integrating targeted ortholog searches with automated scoring of protein domain architecture similarities and an assessment of when search sensitivity becomes limiting, to trace 301 curated eukaryotic ribosome biogenesis factors across 982 taxa spanning the tree of life and including 727 archaea. We show that both factor loss and lineage-specific modifications of factor function modulate ribosome biogenesis, and we highlight that limited sensitivity of the ortholog search can confound evolutionary conclusions. Projecting into the archaeal domain, we find that only few factors are consistently present across the analyzed taxa, and lineage-specific loss is common. While members of the Asgard group are not special with respect to their inventory of ribosome biogenesis factors (RBFs), they unite the highest number of orthologs to eukaryotic RBFs in one taxon. Using large ribosomal subunit maturation as an example, we demonstrate that archaea pursue a simplified version of the corresponding steps in eukaryotes. Much of the complexity of this process evolved on the eukaryotic lineage by the duplication of ribosomal proteins and their subsequent functional diversification into ribosome biogenesis factors. This highlights that studying ribosome biogenesis in archaea provides fundamental information also for understanding the process in eukaryotes.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hauke S. Hillen ◽  
Elena Lavdovskaia ◽  
Franziska Nadler ◽  
Elisa Hanitsch ◽  
Andreas Linden ◽  
...  

AbstractRibosome biogenesis requires auxiliary factors to promote folding and assembly of ribosomal proteins and RNA. Particularly, maturation of the peptidyl transferase center (PTC) is mediated by conserved GTPases, but the molecular basis is poorly understood. Here, we define the mechanism of GTPase-driven maturation of the human mitochondrial large ribosomal subunit (mtLSU) using endogenous complex purification, in vitro reconstitution and cryo-EM. Structures of transient native mtLSU assembly intermediates that accumulate in GTPBP6-deficient cells reveal how the biogenesis factors GTPBP5, MTERF4 and NSUN4 facilitate PTC folding. Addition of recombinant GTPBP6 reconstitutes late mtLSU biogenesis in vitro and shows that GTPBP6 triggers a molecular switch and progression to a near-mature PTC state. Additionally, cryo-EM analysis of GTPBP6-treated mature mitochondrial ribosomes reveals the structural basis for the dual-role of GTPBP6 in ribosome biogenesis and recycling. Together, these results provide a framework for understanding step-wise PTC folding as a critical conserved quality control checkpoint.


2021 ◽  
Vol 14 (2) ◽  
pp. 137
Author(s):  
Christos I. Papagiannopoulos ◽  
Nikoleta F. Theodoroula ◽  
Ioannis S. Vizirianakis

miRNAs constitute a class of non-coding RNA that act as powerful epigenetic regulators in animal and plant cells. In order to identify putative tumor-suppressor miRNAs we profiled the expression of various miRNAs during differentiation of erythroleukemia cells. RNA was purified before and after differentiation induction and subjected to quantitative RT-PCR. The majority of the miRNAs tested were found upregulated in differentiated cells with miR-16-5p showing the most significant increase. Functional studies using gain- and loss-of-function constructs proposed that miR-16-5p has a role in promoting the erythroid differentiation program of murine erythroleukemia (MEL) cells. In order to identify the underlying mechanism of action, we utilized bioinformatic in-silico platforms that incorporate predictions for the genes targeted by miR-16-5p. Interestingly, ribosome constituents, as well as ribosome biogenesis factors, were overrepresented among the miR-16-5p predicted gene targets. Accordingly, biochemical experiments showed that, indeed, miR-16-5p could modulate the levels of independent ribosomal proteins, and the overall ribosomal levels in cultured cells. In conclusion, miR-16-5p is identified as a differentiation-promoting agent in erythroleukemia cells, demonstrating antiproliferative activity, likely as a result of its ability to target the ribosomal machinery and restore any imbalanced activity imposed by the malignancy and the blockade of differentiation.


2016 ◽  
Vol 198 (18) ◽  
pp. 2494-2502 ◽  
Author(s):  
Leonid V. Aseev ◽  
Ludmila S. Koledinskaya ◽  
Irina V. Boni

ABSTRACTIt is widely assumed that in the best-characterized model bacteriumEscherichia coli, transcription units encoding ribosomal proteins (r-proteins) and regulation of their expression have been already well defined. However, transcription start sites for severalE. colir-protein operons have been established only very recently, so that information concerning the regulation of these operons at the transcriptional or posttranscriptional level is still missing. This paper describes for the first time thein vivoregulation of three r-protein operons,rplM-rpsI,rpmB-rpmG, andrplU-rpmA. The results demonstrate that transcription of all three operons is subject to ppGpp/DksA-dependent negative stringent control under amino acid starvation, in parallel with the rRNA operons. By using single-copy translational fusions with the chromosomallacZgene, we show here that at the translation level only one of these operons,rplM-rpsI, is regulated by the mechanism of autogenous repression involving the 5′ untranslated region (UTR) of the operon mRNA, whilerpmB-rpmGandrplU-rpmAare not subject to this type of regulation. This may imply that translational feedback control is not a general rule for modulating the expression ofE. colir-protein operons. Finally, we report that L13, a primary protein in 50S ribosomal subunit assembly, serves as a repressor ofrplM-rpsIexpressionin vivo, acting at a target within therplMtranslation initiation region. Thus, L13 represents a novel example of regulatory r-proteins in bacteria.IMPORTANCEIt is important to obtain a deeper understanding of the regulatory mechanisms responsible for coordinated and balanced synthesis of ribosomal components. In this paper, we highlight the major role of a stringent response in regulating transcription of three previously unexplored r-protein operons, and we show that only one of them is subject to feedback regulation at the translational level. Improved knowledge of the regulatory pathways controlling ribosome biogenesis may promote the development of novel antibacterial agents.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mariam Jaafar ◽  
Julia Contreras ◽  
Carine Dominique ◽  
Sara Martín-Villanueva ◽  
Régine Capeyrou ◽  
...  

AbstractSynthesis of eukaryotic ribosomes involves the assembly and maturation of precursor particles (pre-ribosomal particles) containing ribosomal RNA (rRNA) precursors, ribosomal proteins (RPs) and a plethora of assembly factors (AFs). Formation of the earliest precursors of the 60S ribosomal subunit (pre-60S r-particle) is among the least understood stages of ribosome biogenesis. It involves the Npa1 complex, a protein module suggested to play a key role in the early structuring of the pre-rRNA. Npa1 displays genetic interactions with the DExD-box protein Dbp7 and interacts physically with the snR190 box C/D snoRNA. We show here that snR190 functions as a snoRNA chaperone, which likely cooperates with the Npa1 complex to initiate compaction of the pre-rRNA in early pre-60S r-particles. We further show that Dbp7 regulates the dynamic base-pairing between snR190 and the pre-rRNA within the earliest pre-60S r-particles, thereby participating in structuring the peptidyl transferase center (PTC) of the large ribosomal subunit.


2019 ◽  
Vol 47 (14) ◽  
pp. 7548-7563 ◽  
Author(s):  
Amlan Roychowdhury ◽  
Clément Joret ◽  
Gabrielle Bourgeois ◽  
Valérie Heurgué-Hamard ◽  
Denis L J Lafontaine ◽  
...  

Abstract Ribosome biogenesis is an essential process in all living cells, which entails countless highly sequential and dynamic structural reorganization events. These include formation of dozens RNA helices through Watson-Crick base-pairing within ribosomal RNAs (rRNAs) and between rRNAs and small nucleolar RNAs (snoRNAs), transient association of hundreds of proteinaceous assembly factors to nascent precursor (pre-)ribosomes, and stable assembly of ribosomal proteins. Unsurprisingly, the largest group of ribosome assembly factors are energy-consuming proteins (NTPases) including 25 RNA helicases in budding yeast. Among these, the DEAH-box Dhr1 is essential to displace the box C/D snoRNA U3 from the pre-rRNAs where it is bound in order to prevent premature formation of the central pseudoknot, a dramatic irreversible long-range interaction essential to the overall folding of the small ribosomal subunit. Here, we report the crystal structure of the Dhr1 helicase module, revealing the presence of a remarkable carboxyl-terminal domain essential for Dhr1 function in ribosome biogenesis in vivo and important for its interaction with its coactivator Utp14 in vitro. Furthermore, we report the functional consequences on ribosome biogenesis of DHX37 (human Dhr1) mutations found in patients suffering from microcephaly and other neurological diseases.


2017 ◽  
Vol 474 (2) ◽  
pp. 195-214 ◽  
Author(s):  
Salini Konikkat ◽  
John L. Woolford,

Ribosome biogenesis requires the intertwined processes of folding, modification, and processing of ribosomal RNA, together with binding of ribosomal proteins. In eukaryotic cells, ribosome assembly begins in the nucleolus, continues in the nucleoplasm, and is not completed until after nascent particles are exported to the cytoplasm. The efficiency and fidelity of ribosome biogenesis are facilitated by >200 assembly factors and ∼76 different small nucleolar RNAs. The pathway is driven forward by numerous remodeling events to rearrange the ribonucleoprotein architecture of pre-ribosomes. Here, we describe principles of ribosome assembly that have emerged from recent studies of biogenesis of the large ribosomal subunit in the yeast Saccharomyces cerevisiae. We describe tools that have empowered investigations of ribosome biogenesis, and then summarize recent discoveries about each of the consecutive steps of subunit assembly.


2018 ◽  
Vol 217 (12) ◽  
pp. 4141-4154 ◽  
Author(s):  
Jason C. Collins ◽  
Homa Ghalei ◽  
Joanne R. Doherty ◽  
Haina Huang ◽  
Rebecca N. Culver ◽  
...  

The correct assembly of ribosomes from ribosomal RNAs (rRNAs) and ribosomal proteins (RPs) is critical, as indicated by the diseases caused by RP haploinsufficiency and loss of RP stoichiometry in cancer cells. Nevertheless, how assembly of each RP is ensured remains poorly understood. We use yeast genetics, biochemistry, and structure probing to show that the assembly factor Ltv1 facilitates the incorporation of Rps3, Rps10, and Asc1/RACK1 into the small ribosomal subunit head. Ribosomes from Ltv1-deficient yeast have substoichiometric amounts of Rps10 and Asc1 and show defects in translational fidelity and ribosome-mediated RNA quality control. These defects provide a growth advantage under some conditions but sensitize the cells to oxidative stress. Intriguingly, relative to glioma cell lines, breast cancer cells have reduced levels of LTV1 and produce ribosomes lacking RPS3, RPS10, and RACK1. These data describe a mechanism to ensure RP assembly and demonstrate how cancer cells circumvent this mechanism to generate diverse ribosome populations that can promote survival under stress.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1035 ◽  
Author(s):  
Sophie Sleiman ◽  
Francois Dragon

Ribosome biogenesis is one of the most energy demanding processes in the cell. In eukaryotes, the main steps of this process occur in the nucleolus and include pre-ribosomal RNA (pre-rRNA) processing, post-transcriptional modifications, and assembly of many non-ribosomal factors and ribosomal proteins in order to form mature and functional ribosomes. In yeast and humans, the nucleolar RNA acetyltransferase Kre33/NAT10 participates in different maturation events, such as acetylation and processing of 18S rRNA, and assembly of the 40S ribosomal subunit. Here, we review the structural and functional features of Kre33/NAT10 RNA acetyltransferase, and we underscore the importance of this enzyme in ribosome biogenesis, as well as in acetylation of non-ribosomal targets. We also report on the role of human NAT10 in Hutchinson–Gilford progeria syndrome.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1125 ◽  
Author(s):  
Ramtin Shayan ◽  
Dana Rinaldi ◽  
Natacha Larburu ◽  
Laura Plassart ◽  
Stéphanie Balor ◽  
...  

Assembly of eukaryotic ribosomal subunits is a very complex and sequential process that starts in the nucleolus and finishes in the cytoplasm with the formation of functional ribosomes. Over the past few years, characterization of the many molecular events underlying eukaryotic ribosome biogenesis has been drastically improved by the “resolution revolution” of cryo-electron microscopy (cryo-EM). However, if very early maturation events have been well characterized for both yeast ribosomal subunits, little is known regarding the final maturation steps occurring to the small (40S) ribosomal subunit. To try to bridge this gap, we have used proteomics together with cryo-EM and single particle analysis to characterize yeast pre-40S particles containing the ribosome biogenesis factor Tsr1. Our analyses lead us to refine the timing of the early pre-40S particle maturation steps. Furthermore, we suggest that after an early and structurally stable stage, the beak and platform domains of pre-40S particles enter a “vibrating” or “wriggling” stage, that might be involved in the final maturation of 18S rRNA as well as the fitting of late ribosomal proteins into their mature position.


2005 ◽  
Vol 388 (3) ◽  
pp. 819-826 ◽  
Author(s):  
Yaroslav SYDORSKYY ◽  
David J. DILWORTH ◽  
Brendan HALLORAN ◽  
Eugene C. YI ◽  
Taras MAKHNEVYCH ◽  
...  

Ribosome biogenesis in Saccharomyces cerevisiae occurs primarily in a specialized nuclear compartment termed the nucleolus within which the rRNA genes are transcribed by RNA polymerase I into a large 35 S rRNA precursor. The ensuing association/dissociation and catalytic activity of numerous trans-acting protein factors, RNAs and ribosomal proteins ultimately leads to the maturation of the precursor rRNAs into 25, 5.8 and 18 S rRNAs and the formation of mature cytoplasmic 40 and 60 S ribosomal subunits. Although many components involved in ribosome biogenesis have been identified, our understanding of this essential cellular process remains limited. In the present study we demonstrate a crucial role for the previously uncharacterized nucleolar protein Nop53p (Ypl146p) in ribosome biogenesis. Specifically, Nop53p appears to be most important for biogenesis of the 60 S subunit. It physically interacts with rRNA processing factors, notably Cbf5p and Nop2p, and co-fractionates specifically with pre-60 S particles on sucrose gradients. Deletion or mutations within NOP53 cause significant growth defects and display significant 60 S subunit deficiencies, an imbalance in the 40 S:60 S ratio, as revealed by polysome profiling, and defects in progression beyond the 27 S stage of 25 S rRNA maturation during 60 S biogenesis.


Sign in / Sign up

Export Citation Format

Share Document