scholarly journals Fine-tuning of the AMBER RNA Force Field with a New Term Adjusting Interactions of Terminal Nucleotides

2020 ◽  
Author(s):  
Vojtěch Mlýnský ◽  
Petra Kührová ◽  
Tomáš Kühr ◽  
Michal Otyepka ◽  
Giovanni Bussi ◽  
...  

ABSTRACTDetermination of RNA structural-dynamic properties is challenging for experimental methods. Thus atomistic molecular dynamics (MD) simulations represent a helpful technique complementary to experiments. However, contemporary MD methods still suffer from limitations of force fields (ffs), including imbalances in the non-bonded ff terms. We have recently demonstrated that some improvement of state-of-the-art AMBER RNA ff can be achieved by adding a new term for H-bonding called gHBfix, which increases tuning flexibility and reduces the risk of side-effects. Still, the first gHBfix version did not fully correct simulations of short RNA tetranucleotides (TNs). TNs are key benchmark systems due to availability of unique NMR data, although giving too much weight on improving TN simulations can easily lead to over-fitting to A-form RNA. Here we combine the gHBfix version with another term called tHBfix, which separately treats H-bond interactions formed by terminal nucleotides. This allows to refine simulations of RNA TNs without affecting simulations of other RNAs. The approach is in line with adopted strategy of current RNA ffs, where the terminal nucleotides possess different parameters for the terminal atoms than the internal nucleotides. The combination of gHBfix with tHBfix significantly improves the behavior of RNA TNs during well-converged enhanced-sampling simulations. TNs mostly populate canonical A-form like states while spurious intercalated structures are largely suppressed. Still, simulations of r(AAAA) and r(UUUU) TNs show some residual discrepancies with the primary NMR data which suggests that future tuning of some other ff terms might be useful.

2017 ◽  
Author(s):  
Irfan Alibay ◽  
Kepa K. Burusco ◽  
Neil J. Bruce ◽  
Richard A. Bryce

<p>Determining the conformations accessible to carbohydrate ligands in aqueous solution is important for understanding their biological action. In this work, we evaluate the conformational free energy surfaces of Lewis oligosaccharides in explicit aqueous solvent using a multidimensional variant of the swarm-enhanced sampling molecular dynamics (msesMD) method; we compare with multi-microsecond unbiased MD simulations, umbrella sampling and accelerated MD approaches. For the sialyl Lewis A tetrasaccharide, msesMD simulations in aqueous solution predict conformer landscapes in general agreement with the other biased methods and with triplicate unbiased 10 ms trajectories; these simulations find a predominance of closed conformer and a range of low occupancy open forms. The msesMD simulations also suggest closed-to-open transitions in the tetrasaccharide are facilitated by changes in ring puckering of its GlcNAc residue away from the <sup>4</sup>C<sub>1</sub> form, in line with previous work. For sialyl Lewis X tetrasaccharide, msesMD simulations predict a minor population of an open form in solution, corresponding to a rare lectin-bound pose observed crystallographically. Overall, from comparison with biased MD calculations, we find that triplicate 10 ms unbiased MD simulations may not be enough to fully sample glycan conformations in aqueous solution. However, the computational efficiency and intuitive approach of the msesMD method suggest potential for its application in glycomics as a tool for analysis of oligosaccharide conformation.</p>


Glycobiology ◽  
2019 ◽  
Vol 30 (6) ◽  
pp. 407-414 ◽  
Author(s):  
Aoife Harbison ◽  
Elisa Fadda

Abstract The immunoglobulin type G (IgG) Fc N-glycans are known to modulate the interaction with membrane-bound Fc γ receptors (FcγRs), fine-tuning the antibody’s effector function in a sequence-dependent manner. Particularly interesting in this respect are the roles of galactosylation, which levels are linked to autoimmune conditions and aging, of core fucosylation, which is known to reduce significantly the antibody-dependent cellular cytotoxicity (ADCC), and of sialylation, which also reduces antibody-dependent cellular cytotoxicity (ADCC) but only in the context of core-fucosylation. In this article, we provide an atomistic level perspective through enhanced sampling computer simulations, based on replica exchange molecular dynamics (REMD), to understand the molecular determinants linking the Fc N-glycans sequence to the observed IgG1 function. Our results indicate that the two symmetrically opposed N-glycans interact extensively through their core trimannose residues. At room temperature, the terminal galactose on the α (1–6) arm is restrained to the protein through a network of interactions that keep the arm outstretched; meanwhile, the α (1–3) arm extends toward the solvent where a terminal sialic acid remains fully accessible. We also find that the presence of core fucose interferes with the extended sialylated α (1–3) arm, altering its conformational propensity and as a consequence of steric hindrance, significantly enhancing the Fc dynamics. Furthermore, structural analysis shows that the core-fucose position within the Fc core obstructs the access of N162 glycosylated FcγRs very much like a “door-stop,” potentially decreasing the IgG/FcγR binding free energy. These results provide an atomistic level-of-detail framework for the design of high potency IgG1 Fc N-glycoforms.


IUCrJ ◽  
2015 ◽  
Vol 2 (2) ◽  
pp. 256-266 ◽  
Author(s):  
Federico Giberti ◽  
Matteo Salvalaglio ◽  
Michele Parrinello

Crystallization processes are characterized by activated events and long timescales. These characteristics prevent standard molecular dynamics techniques from being efficiently used for the direct investigation of processes such as nucleation. This short review provides an overview on the use of metadynamics, a state-of-the-art enhanced sampling technique, for the simulation of phase transitions involving the production of a crystalline solid. In particular the principles of metadynamics are outlined, several order parameters are described that have been or could be used in conjunction with metadynamics to sample nucleation events and then an overview is given of recent metadynamics results in the field of crystal nucleation.


NANO ◽  
2015 ◽  
Vol 10 (02) ◽  
pp. 1550025 ◽  
Author(s):  
Seyed Hanif Mahboobi ◽  
Alireza Taheri ◽  
Hossein Nejat Pishkenari ◽  
Ali Meghdari ◽  
Mahya Hemmat

Determination of an injection condition which is minimally invasive to the cell membrane is of great importance in drug and gene delivery. For this purpose, a series of molecular dynamics (MD) simulations are conducted to study the penetration of a carbon nanotube (CNT) into a pure POPC cell membrane under various injection velocities, CNT tilt angles and chirality parameters. The simulations are nonequilibrium and all-atom. The force and stress exerted on the nanotube, deformation of the lipid bilayer, and strain of the CNT atoms are inspected during the simulations. We found that a lower nanotube velocity results in successfully entering the membrane with minimum disruption in the CNT and the lipid bilayer, and CNT's chirality distinctly affects the results. Moreover, it is shown that the tilt angle of the CNT influences the nanotube's buckling and may result in destroying the membrane structure during the injection process.


RSC Advances ◽  
2018 ◽  
Vol 8 (68) ◽  
pp. 38706-38714 ◽  
Author(s):  
Shi Zhibo ◽  
Li Liyi ◽  
Han Yong ◽  
Bai Jie

A detailed analysis of structural properties and dynamic properties of ferric chloride aqueous solution under external electrostatic fields with different intensities was performed by molecular dynamics (MD) simulations.


2016 ◽  
Vol 195 ◽  
pp. 557-568 ◽  
Author(s):  
Pablo M. Piaggi ◽  
Omar Valsson ◽  
Michele Parrinello

We study by computer simulation the nucleation of a supersaturated Lennard-Jones vapor into the liquid phase. The large free energy barriers to transition make the time scale of this process impossible to study by ordinary molecular dynamics simulations. Therefore we use a recently developed enhanced sampling method [Valsson and Parrinello, Phys. Rev. Lett.113, 090601 (2014)] based on the variational determination of a bias potential. We differ from previous applications of this method in that the bias is constructed on the basis of the physical model provided by the classical theory of nucleation. We examine the technical problems associated with this approach. Our results are very satisfactory and will pave the way for calculating the nucleation rates in many systems.


Sign in / Sign up

Export Citation Format

Share Document