scholarly journals Universal principles of lineage architecture and stem cell identity in renewing tissues

2020 ◽  
Author(s):  
Philip Greulich ◽  
Ben D. MacArthur ◽  
Cristina Parigini ◽  
Rubén J. Sánchez-García

Adult tissues in multicellular organisms typically contain a variety of stem, progenitor and differentiated cell types arranged in a lineage hierarchy that regulates healthy tissue turnover and repair. Lineage hierarchies in disparate tissues often exhibit common features, yet the general principles regulating their architecture are not known. Here, we provide a formal framework for understanding the relationship between cell molecular ‘states’ (patterns of gene, protein expression etc. in the cell) and cell ‘types’ that uses notions from network science to decompose the structure of cell state trajectories into functional units. Using this framework we show that many widely experimentally observed features of cell lineage architectures – including the fact that a single adult stem cell type always resides at the apex of a lineage hierarchy – arise as a natural consequence of homeostasis, and indeed are the only possible way that lineage architectures can be constructed to support homeostasis in renewing tissues. Furthermore, under suitable feedback regulation, for example from the stem cell niche, we show that the property of ‘stemness’ is entirely determined by the cell environment. Thus, we argue that stem cell identities are contextual and not determined by hard-wired, cell-intrinsic, characteristics.

Development ◽  
2021 ◽  
Vol 148 (11) ◽  
Author(s):  
Philip Greulich ◽  
Ben D. MacArthur ◽  
Cristina Parigini ◽  
Rubén J. Sánchez-García

ABSTRACT Adult tissues in multicellular organisms typically contain a variety of stem, progenitor and differentiated cell types arranged in a lineage hierarchy that regulates healthy tissue turnover. Lineage hierarchies in disparate tissues often exhibit common features, yet the general principles regulating their architecture are not known. Here, we provide a formal framework for understanding the relationship between cell molecular ‘states’ and cell ‘types’, based on the topology of admissible cell state trajectories. We show that a self-renewing cell type – if defined as suggested by this framework – must reside at the top of any homeostatic renewing lineage hierarchy, and only there. This architecture arises as a natural consequence of homeostasis, and indeed is the only possible way that lineage architectures can be constructed to support homeostasis in renewing tissues. Furthermore, under suitable feedback regulation, for example from the stem cell niche, we show that the property of ‘stemness’ is entirely determined by the cell environment, in accordance with the notion that stem cell identities are contextual and not determined by hard-wired, cell-intrinsic characteristics. This article has an associated ‘The people behind the papers’ interview.


Author(s):  
S. Kyryachenko ◽  
L. Formicola ◽  
D. Ollitrault ◽  
R. Correra ◽  
A.-L. Denizot ◽  
...  

2020 ◽  
Vol 10 ◽  
Author(s):  
Akshitkumar M. Mistry ◽  
Nishit Mummareddy ◽  
Sanjana Salwi ◽  
Larry T. Davis ◽  
Rebecca A. Ihrie

ObjectiveTo determine the relationship between survival and glioblastoma distance from the ventricular-subventricular neural stem cell niche (VSVZ).Methods502 pre-operative gadolinium-enhanced, T1-weighted MRIs with glioblastoma retrieved from an institutional dataset (n = 252) and The Cancer Imaging Atlas (n=250) were independently reviewed. The shortest distance from the tumor contrast enhancement to the nearest lateral ventricular wall, the location of the VSVZ, was measured (GBM-VSVZDist). The relationship of GBM-VSVZDist with the proportion of glioblastomas at each distance point and overall survival was explored with a Pearson’s correlation and Cox regression model, respectively, adjusting for the well-established glioblastoma prognosticators.Results244/502 glioblastomas had VSVZ contact. The proportion of non-VSVZ-contacting glioblastomas correlated inversely with GBM-VSVZDist (partial Pearson’s correlation adjusted for tumor volume R=-0.79, p=7.11x10-7). A fit of the Cox regression model adjusted for age at diagnosis, Karnofsky performance status score, post-operative treatment with temozolomide and/or radiotherapy, IDH1/2 mutation status, MGMT promoter methylation status, tumor volume, and extent of resection demonstrated a significantly decreased overall survival only when glioblastoma contacted the VSVZ. Overall survival did not correlate with GBM-VSVZDist.ConclusionsIn the two independent cohorts analyzed, glioblastomas at diagnosis were found in close proximity or in contact with the VSVZ with a proportion that decreased linearly with GBM-VSVZDist. Patient survival was only influenced by the presence or absence of a gadolinium-enhanced glioblastoma contact with the VSVZ. These results may guide analyses to test differential effectiveness of VSVZ radiation in VSVZ-contacting and non-contacting glioblastomas and/or inform patient selection criteria in clinical trials of glioblastoma radiation.


2019 ◽  
Vol 12 (4) ◽  
pp. 816-830 ◽  
Author(s):  
Amber N. Ziegler ◽  
Qiang Feng ◽  
Shravanthi Chidambaram ◽  
Jaimie M. Testai ◽  
Ekta Kumari ◽  
...  

2009 ◽  
Vol 296 (2) ◽  
pp. C296-C305 ◽  
Author(s):  
S. Samuel ◽  
R. Walsh ◽  
J. Webb ◽  
A. Robins ◽  
C. Potten ◽  
...  

Colonic epithelial stem cells are believed to be located at the crypt base where they have previously been shown to express musashi-1. The colonic stem cell niche, which includes extracellular matrix and myofibroblasts (together with other cell types), is likely to be important in maintaining the function of the progenitor cells. The aims of our studies were to characterize stem cells in isolated and disaggregated human colonic crypt epithelial cells and investigate their interactions with monolayers of primary human colonic myofibroblasts. In unfractionated preparations of disaggregated colonic crypts, musashi-1 positive cells preferentially adhered to colonic myofibroblasts, despite the presence of excess blocking anti-β1-integrin antibody. These adherent epithelial cells remained viable for a number of days and developed slender processes. Cells with side population characteristics (as demonstrated by ability to expel the dye Hoechst 33342) were consistently seen in the isolated colonic crypt epithelial cells. These side population cells expressed musashi-1, β1-integrin, BerEP4, and CD133. Sorted side population crypt epithelial cells also rapidly adhered to primary colonic myofibroblasts. In conclusion, in preparation of isolated and disaggregated human colonic crypts, cells with stem cell characteristics preferentially adhere to primary human colonic myofibroblasts in a β1-integrin-independent fashion.


Blood ◽  
2010 ◽  
Vol 116 (11) ◽  
pp. 1857-1866 ◽  
Author(s):  
Ilaria Visigalli ◽  
Silvia Ungari ◽  
Sabata Martino ◽  
Hyejung Park ◽  
Martina Cesani ◽  
...  

Abstract The balance between survival and death in many cell types is regulated by small changes in the intracellular content of bioactive sphingolipids. Enzymes that either produce or degrade these sphingolipids control this equilibrium. The findings here described indicate that the lysosomal galactocerebrosidase (GALC) enzyme, defective in globoid cell leukodystrophy, is involved in the maintenance of a functional hematopoietic stem/progenitor cell (HSPC) niche by contributing to the control of the intracellular content of key sphingolipids. Indeed, we show that both insufficient and supraphysiologic GALC activity—by inherited genetic deficiency or forced gene expression in patients' cells and in the disease model—induce alterations of the intracellular content of the bioactive GALC downstream products ceramide and sphingosine, and thus affect HSPC survival and function and the functionality of the stem cell niche. Therefore, GALC and, possibly, other enzymes for the maintenance of niche functionality and health tightly control the concentration of these sphingolipids within HSPCs.


BMB Reports ◽  
2015 ◽  
Vol 48 (12) ◽  
pp. 655-667 ◽  
Author(s):  
Juergen Fink ◽  
Amanda Andersson-Rolf ◽  
Bon-Kyoung Koo

2009 ◽  
Vol 106 (52) ◽  
pp. 22311-22316 ◽  
Author(s):  
Megan L. Insco ◽  
Arlene Leon ◽  
Cheuk Ho Tam ◽  
Dennis M. McKearin ◽  
Margaret T. Fuller

2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Wing Yan Yu ◽  
Carl Sheridan ◽  
Ian Grierson ◽  
Sharon Mason ◽  
Victoria Kearns ◽  
...  

Several adult stem cell types have been found in different parts of the eye, including the corneal epithelium, conjunctiva, and retina. In addition to these, there have been accumulating evidence that some stem-like cells reside in the transition area between the peripheral corneal endothelium (CE) and the anterior nonfiltering portion of the trabecular meshwork (TM), which is known as the Schwalbe's Ring region. These stem/progenitor cells may supply new cells for the CE and TM. In fact, the CE and TM share certain similarities in terms of their embryonic origin and proliferative capacityin vivo. In this paper, we discuss the putative stem cell source which has the potential for replacement of lost and nonfunctional cells in CE diseases and glaucoma. The future development of personalized stem cell therapies for the CE and TM may reduce the requirement of corneal grafts and surgical treatments in glaucoma.


Sign in / Sign up

Export Citation Format

Share Document