Sex determining gene transposition as an evolutionary platform for chromosome turnover

Author(s):  
Fernando Ayllon ◽  
Monica Favnebøe Solberg ◽  
François Besnier ◽  
Per Gunnar Fjelldal ◽  
Tom Johnny Hansen ◽  
...  

SummaryDespite the key role that sex-determination plays in evolutionary processes, it is still poorly understood in many species. In salmonids, which are the best studied family of fishes, the master sex-determining gene sexually dimorphic on the Y-chromosome (sdY) has been identified. However, sdY displays unexplained discordance to the phenotypic sex, with a variable frequency of phenotypic females being reported as genetic males. Multiple sex determining loci in Atlantic salmon have also been reported, possibly as a result of transposition, suggesting a recent and non-random sex chromosome turnover in this species. We hypothesized the existence of an autosomic pseudocopy of sdY that is transmitted in accordance with Mendelian inheritance. To test this we developed a qPCR methodology to detect the number of sdY copies present in the genome. Based on the observed phenotype/genotype frequencies and linkage analysis among 2025 offspring from 64 pedigree-controlled families of accurately phenotyped Atlantic salmon, we identified both males and females carrying one or two autosomic copies in addition to the Y-specific copy present in males. Copy number frequencies were consistent with Mendelian inheritance. Pseudocopy loci were mapped to different chromosomes evidencing non-random transitions of the sex determining gene in Atlantic salmon and the existence of functional constraints for chromosome turnover.

2019 ◽  
Author(s):  
Pui-Pik Law ◽  
Ping-Kei Chan ◽  
Kirsten McEwen ◽  
Huihan Zhi ◽  
Bing Liang ◽  
...  

SummarySex differences in growth rate in very early embryos have been recognized in a variety of mammals and attributed to sex-chromosome complement effects as they occur before overt sexual differentiation. We previously found that sex-chromosome complement, rather than sex hormones regulates heterochromatin-mediated silencing of a transgene and autosomal gene expression in mice. Here, sex dimorphism in proliferation was investigated. We confirm that male embryonic fibroblasts proliferate faster than female fibroblasts and show that this proliferation advantage is completely dependent upon heterochromatin protein 1 gamma (HP1γ). To determine whether this sex-regulatory effect of HP1γ was a more general phenomenon, we performed RNA sequencing on MEFs derived from males and females, with or without HP1γ. Strikingly, HP1γ was found to be crucial for regulating nearly all sexually dimorphic autosomal gene expression because deletion of the HP1γ gene in males abolished sex differences in autosomal gene expression. The identification of a key epigenetic modifier as central in defining gene expression differences between males and females has important implications for understanding physiological sex differences and sex bias in disease.


2018 ◽  
Author(s):  
Roberta Bergero ◽  
Jim Gardner ◽  
Beth Bader ◽  
Lengxob Yong ◽  
Deborah Charlesworth

Summary/AbstractRecombination suppression between sex chromosomes is often stated to evolve in response to polymorphisms for mutations that affect fitness of males and females in opposite directions (sexually antagonistic, or SA, mutations), but direct empirical support is lacking. The sex chromosomes of the fish Poecilia reticulata (the guppy) carry SA polymorphisms, making them excellent for testing this hypothesis for the evolution of sex linkage. We resequenced genomes of male and female guppies and, unexpectedly, found that variants on the sex chromosome indicate no extensive region with fully sex-linked genotypes, though many variants show strong evidence for partial sex linkage. We present genetic mapping results that help understand the evolution of the guppy sex chromosome pair. We find very different distributions of crossing over in the two sexes, with recombination events in male meiosis detected only at the tips of the chromosomes. The guppy may exemplify a route for sex chromosome evolution in which low recombination in males, likely evolved in a common ancestor, has facilitated the establishment of sexually antagonistic polymorphisms.


2020 ◽  
Vol 160 (11-12) ◽  
pp. 634-642
Author(s):  
Shiqiang Luo ◽  
Xingyuan Chen ◽  
Tizhen Yan ◽  
Jiaolian Ya ◽  
Zehui Xu ◽  
...  

High-throughput sequencing based on copy number variation (CNV-seq) is commonly used to detect chromosomal abnormalities. This study identifies chromosomal abnormalities in aborted embryos/fetuses in early and middle pregnancy and explores the application value of CNV-seq in determining the causes of pregnancy termination. High-throughput sequencing was used to detect chromosome copy number variations (CNVs) in 116 aborted embryos in early and middle pregnancy. The detection data were compared with the Database of Genomic Variants (DGV), the Database of Chromosomal Imbalance and Phenotype in Humans using Ensemble Resources (DECIPHER), and the Online Mendelian Inheritance in Man (OMIM) database to determine the CNV type and the clinical significance. High-throughput sequencing results were successfully obtained in 109 out of 116 specimens, with a detection success rate of 93.97%. In brief, there were 64 cases with abnormal chromosome numbers and 23 cases with CNVs, in which 10 were pathogenic mutations and 13 were variants of uncertain significance. An abnormal chromosome number is the most important reason for embryo termination in early and middle pregnancy, followed by pathogenic chromosome CNVs. CNV-seq can quickly and accurately detect chromosome abnormalities and identify microdeletion and microduplication CNVs that cannot be detected by conventional chromosome analysis, which is convenient and efficient for genetic etiology diagnosis in miscarriage.


PLoS ONE ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. e0191373 ◽  
Author(s):  
Antonio Aguayo ◽  
Camille S. Martin ◽  
Timothy F. Huddy ◽  
Maya Ogawa-Okada ◽  
Jamie L. Adkins ◽  
...  

2002 ◽  
Vol 80 (9) ◽  
pp. 1578-1583 ◽  
Author(s):  
Christopher P Yourth ◽  
Mark R Forbes ◽  
Robert L Baker

A few studies have shown that male and female invertebrates differ in immunity and that these differences appear related to differences in sexual dimorphism and gender differences in life histories. Melanotic encapsulation of foreign objects in insects is one form of immunity. The damselfly Lestes forcipatus Rambur is moderately sexually dimorphic, and much is known about patterns of mass gain in congeners relating to differences in life history between males and females. In this study, females were more immunoresponsive than males under controlled temperatures, following emergence, and at a time when parasitic mites were challenging these hosts. However, males and females that overlapped in mass at emergence did not differ in their immune responses. Males in better condition at emergence were more immunoresponsive than lighter males, but this relation was not found in females. Sex differences in immune expression may have implications for how females versus males are able to deal with challenges from parasites, under varying environmental conditions.


2010 ◽  
Vol 3 (1) ◽  
pp. 63-96 ◽  
Author(s):  
Rodrigo Pereira ◽  
Satoko Narita ◽  
Daisuke Kageyama ◽  
Finn Kjellberg

AbstractArthropods are sexually dimorphic. An arthropod individual usually differentiates into a male or a female. With very low frequencies, however, individuals with both male and female morphological characters have repeatedly been found in natural and laboratory populations of arthropods. Gynandromorphs (i.e., sexual mosaics) are genetically chimeric individuals consisting of male and female tissues. On the other hand, intersexes are genetically uniform (i.e., complete male, complete female or intermediate in every tissue) but all or some parts of their tissues have either a sexual phenotype opposite to their genetic sex or an intermediate sexual phenotype. Possible developmental processes (e.g., double fertilization of a binucleate egg, loss of a sex chromosome or upregulation/downregulation of sex-determining genes) and causal factors (e.g., mutations, genetic incompatibilities, temperatures or endosymbionts) for the generation of gynandromorphs and intersexes are reviewed and discussed.


2021 ◽  
Author(s):  
Thomas E White ◽  
Amy Locke ◽  
Tanya Latty

Abstract Structurally coloured sexual signals are a conspicuous and widespread class of ornament used in mate choice, though the extent to which they encode information on the quality of their bearers is not fully resolved. Theory predicts that signalling traits under strong sexual selection as honest indicators should evolve to be more developmentally integrated and exaggerated than nonsexual traits, thereby leading to heightened condition dependence. Here we test this prediction through examination of the sexually dimorphic faces and wings of the cursorial fly Lispe cana. Males and females possess structural UV-white and golden faces, respectively, and males present their faces and wings to females during close-range, ground-based courtship displays, thereby creating the opportunity for mutual inspection. Across a field-collected sample of individuals, we found that the appearance of the faces of both sexes scaled positively with individual condition, though along separate axes. Males in better condition expressed brighter faces as modelled according to conspecific flies, whereas condition scaled with facial saturation in females. We found no such relationships for their wing interference pattern nor abdomens, with the latter included as a nonsexual control. Our results suggest that the structurally coloured faces, but not the iridescent wings, of male and female Lispe cana are reliable guides to individual quality and support the broader potential for structural colours as honest signals. They also highlight the potential for mutual mate choice in this system, while arguing for one of several alternate signalling roles for wing interferences patterns among the myriad taxa which bear them.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0237687
Author(s):  
Mariya P. Dobreva ◽  
Joshua G. Lynton-Jenkins ◽  
Jaime A. Chaves ◽  
Masayoshi Tokita ◽  
Camille Bonneaud ◽  
...  

Darwin’s finches are an iconic example of adaptive radiation and evolution under natural selection. Comparative genetic studies using embryos of Darwin’s finches have shed light on the possible evolutionary processes underlying the speciation of this clade. Molecular identification of the sex of embryonic samples is important for such studies, where this information often cannot be inferred otherwise. We tested a fast and simple chicken embryo protocol to extract DNA from Darwin’s finch embryos. In addition, we applied minor modifications to two of the previously reported PCR primer sets for CHD1, a gene used for sexing adult passerine birds. The sex of all 29 tested embryos of six species of Darwin’s finches was determined successfully by PCR, using both primer sets. Next to embryos, hatchlings and fledglings are also impossible to distinguish visually. This extends to juveniles of sexually dimorphic species which are yet to moult in adult-like plumage and beak colouration. Furthermore, four species of Darwin’s finches are monomorphic, males and females looking alike. Therefore, sex assessment in the field can be a source of error, especially with respect to juveniles and mature monomorphic birds outside of the mating season. We caught 567 juveniles and adults belonging to six species of Darwin’s finches and only 44% had unambiguous sex-specific morphology. We sexed 363 birds by PCR: individuals sexed based on marginal sex specific morphological traits; and birds which were impossible to classify in the field. PCR revealed that for birds with marginal sex specific traits, sexing in the field produced a 13% error rate. This demonstrates that PCR based sexing can improve field studies on Darwin’s finches, especially when individuals with unclear sex-related morphology are involved. The protocols used here provide an easy and reliable way to sex Darwin’s finches throughout ontogeny, from embryos to adults.


2019 ◽  
Author(s):  
Ulrich Knief ◽  
Wolfgang Forstmeier ◽  
Bart Kempenaers ◽  
Jochen B. W. Wolf

AbstractPropulsion of sperm cells via movement of the flagellum is of vital importance for successful fertilization. Presumably, the energy for this movement comes from the mitochondria in the sperm midpiece. Larger midpieces may contain more mitochondria, which should enhance the energetic capacity and hence promote mobility. Due to an inversion polymorphism on their sex chromosome TguZ, zebra finches (Taeniopygia guttata castanotis) exhibit large within-species variation in sperm midpiece length, and those sperm with the longest midpieces swim the fastest. Here, we test through quantitative real-time PCR in zebra finch ejaculates whether the inversion genotype has an effect on the copy number of mitochondrial DNA. Taking the inversion genotype as a proxy for midpiece length, we find that zebra finches with longer midpieces indeed have more copies of the mitochondrial DNA in their ejaculates than those with shorter midpieces, with potential downstream effects on the rate of ATP production and sperm swimming speed. This study sheds light on the proximate cause of a fitness-relevant genetic polymorphism, suggesting the involvement of central components of gamete energy metabolism.Data availabilitySupplementary data file


Sign in / Sign up

Export Citation Format

Share Document