scholarly journals Structures of a P4-ATPase lipid flippase in lipid bilayers

Author(s):  
Yilin He ◽  
Jinkun Xu ◽  
Xiaofei Wu ◽  
Long Li

AbstractType 4 P-type ATPases (P4-ATPases) are a group of key enzymes maintaining lipid asymmetry of eukaryotic membranes. Phospholipids are actively and selectively flipped by P4-ATPases from the exoplasmic leaflet to the cytoplasmic leaflet. How lipid flipping is coupled with ATP-hydrolysis by P4-ATPases is poorly understood. Here, we report the electron cryo-microscopy structures of a P4-ATPase, Dnf1-Cdc50 from Chaetomium thermophilum, which had been reconstituted into lipid nanodiscs and captured in two transport intermediate states. The structures reveal that transmembrane segment 1 of Dnf1 becomes highly flexible during lipid transport. The local lipid bilayers are distorted to facilitate the entry of the phospholipid substrates from the exoplasmic leaflet to a cross-membrane groove. During transport, the lipid substrates are relayed through four binding sites in the groove which constantly shields the lipid polar heads away from the hydrophobic environment of the membranes.

2021 ◽  
Author(s):  
Thibaud Dieudonne ◽  
Sara Abad Herrera ◽  
Michelle Juknaviciute Laursen ◽  
Maylis Lejeune ◽  
Charlott Stock ◽  
...  

P-type ATPases from the P4 subfamily (P4-ATPases) are primary active transporters that maintain lipid asymmetry in eukaryotic cell membranes by flipping lipids from the exoplasmic to the cytosolic leaflet. Mutations in several human P4-ATPase genes are associated with severe diseases. For instance, mutations in the ATP8B1 gene result in progressive familial intrahepatic cholestasis, a rare inherited disorder that usually progresses toward liver failure. ATP8B1 forms a binary complex with CDC50A and displays a broad specificity to glycerophospholipids, but regulatory mechanisms are unknown. Here, we report the cryo-EM structure of the human lipid flippase ATP8B1-CDC50A at 3.1 angstrom resolution. The lipid flippase complex is autoinhibited by the N- and C-termini of ATP8B1, which in concert form extensive interactions with the catalytic sites and flexible domain interfaces of ATP8B1. Consistently, ATP hydrolysis by the ATP8B1-CDC50A complex requires truncation of its C-terminus as well as the presence of phosphoinositides, with a marked preference for phosphatidylinositol-3,4,5-phosphate (PI(3,4,5)P3), and removal of both N- and C-termini results in full activation. Restored inhibition of ATP8B1 truncation constructs with a synthetic peptide mimicking the C-terminus further suggests molecular communication between N- and C-termini in the autoinhibition process and demonstrates that the regulatory mechanism can be interfered with by exogenous compounds. A conserved (G/A)(Y/F)AFS motif in the C-termini of several P4-ATPase subfamilies suggests that this mechanism is employed widely across P4-ATPase lipid flippases, including both plasma membrane and endomembrane P4-ATPases.


2001 ◽  
Vol 356 (3) ◽  
pp. 685-704 ◽  
Author(s):  
Kathleen J. SWEADNER ◽  
Claudia DONNET

The crystal structure of SERCA1a (skeletal-muscle sarcoplasmic-reticulum/endoplasmic-reticulum Ca2+-ATPase) has recently been determined at 2.6 Å (note 1 Å = 0.1nm) resolution [Toyoshima, Nakasako, Nomura and Ogawa (2000) Nature (London) 405, 647–655]. Other P-type ATPases are thought to share key features of the ATP hydrolysis site and a central core of transmembrane helices. Outside of these most-conserved segments, structural similarities are less certain, and predicted transmembrane topology differs between subclasses. In the present review the homologous regions of several representative P-type ATPases are aligned with the SERCA sequence and mapped on to the SERCA structure for comparison. Homology between SERCA and the Na,K-ATPase is more extensive than with any other ATPase, even PMCA, the Ca2+-ATPase of plasma membrane. Structural features of the Na,K-ATPase are projected on to the Ca2+-ATPase crystal structure to assess the likelihood that they share the same fold. Homology extends through all ten transmembrane spans, and most insertions and deletions are predicted to be at the surface. The locations of specific residues are examined, such as proteolytic cleavage sites, intramolecular cross-linking sites, and the binding sites of certain other proteins. On the whole, the similarity supports a shared fold, with some particular exceptions.


2019 ◽  
Vol 47 (5) ◽  
pp. 1247-1257 ◽  
Author(s):  
Mateusz Dyla ◽  
Sara Basse Hansen ◽  
Poul Nissen ◽  
Magnus Kjaergaard

Abstract P-type ATPases transport ions across biological membranes against concentration gradients and are essential for all cells. They use the energy from ATP hydrolysis to propel large intramolecular movements, which drive vectorial transport of ions. Tight coordination of the motions of the pump is required to couple the two spatially distant processes of ion binding and ATP hydrolysis. Here, we review our current understanding of the structural dynamics of P-type ATPases, focusing primarily on Ca2+ pumps. We integrate different types of information that report on structural dynamics, primarily time-resolved fluorescence experiments including single-molecule Förster resonance energy transfer and molecular dynamics simulations, and interpret them in the framework provided by the numerous crystal structures of sarco/endoplasmic reticulum Ca2+-ATPase. We discuss the challenges in characterizing the dynamics of membrane pumps, and the likely impact of new technologies on the field.


2004 ◽  
Vol 15 (11) ◽  
pp. 4949-4959 ◽  
Author(s):  
Akio Kihara ◽  
Yasuyuki Igarashi

Glycerophospholipids and sphingolipids are distributed asymmetrically between the two leaflets of the lipid bilayer. Recent studies revealed that certain P-type ATPases and ATP-binding cassette (ABC) transporters are involved in the inward movement (flip) and outward movement (flop) of glycerophospholipids, respectively. In this study of phytosphingosine (PHS)-resistant yeast mutants, we isolated mutants for PDR5, an ABC transporter involved in drug efflux as well as in the flop of phosphatidylethanolamine. The pdr5 mutants exhibited an increase in the efflux of sphingoid long-chain bases (LCBs). Genetic analysis revealed that the PHS-resistant phenotypes exhibited by the pdr5 mutants were dependent on Rsb1p, a putative LCB-specific transporter/translocase. We found that the expression of Rsb1p was increased in the pdr5 mutants. We also demonstrated that expression of RSB1 is under the control of the transcriptional factor Pdr1p. Expression of Rsb1p also was enhanced in mutants for the genes involved in the flip of glycerophospholipids, including ROS3, DNF1, and DNF2. These results suggest that altered glycerophospholipid asymmetry induces the expression of Rsb1p. Conversely, overexpression of Rsb1p resulted in increased flip and decreased flop of fluorescence-labeled glycerophospholipids. Thus, there seems to be cross talk between sphingolipids and glycerophospholipids in maintaining the functional lipid asymmetry of the plasma membrane.


2018 ◽  
Author(s):  
David M. Kern ◽  
SeCheol Oh ◽  
Richard K. Hite ◽  
Stephen G. Brohawn

AbstractHypoosmotic conditions activate volume-regulated anion channels in vertebrate cells. These channels are formed by leucine-rich repeat-containing protein 8 (LRRC8) family members and contain LRRC8A in homo- or hetero-hexameric assemblies. Here we present single-particle cryo-electron microscopy structures of LRRC8A in complex with the inhibitor DCPIB reconstituted in lipid nanodiscs. DCPIB plugs the channel like a cork in a bottle - binding in the extracellular selectivity filter and sterically occluding ion conduction. Constricted and expanded structures reveal coupled dilation of cytoplasmic LRRs and the channel pore, suggesting a mechanism for channel gating by internal stimuli. Conformational and symmetry differences between LRRC8A structures determined in detergent micelles and lipid bilayers related to reorganization of intersubunit lipid binding sites demonstrate a critical role for the membrane in determining channel structure. These results provide insight into LRRC8 gating and inhibition and the role of lipids in the structure of an ionic-strength sensing ion channel.


Science ◽  
2020 ◽  
Vol 369 (6511) ◽  
pp. eabc5809 ◽  
Author(s):  
Michael J. McKenna ◽  
Sue Im Sim ◽  
Alban Ordureau ◽  
Lianjie Wei ◽  
J. Wade Harper ◽  
...  

Organelle identity depends on protein composition. How mistargeted proteins are selectively recognized and removed from organelles is incompletely understood. Here, we found that the orphan P5A–adenosine triphosphatase (ATPase) transporter ATP13A1 (Spf1 in yeast) directly interacted with the transmembrane segment (TM) of mitochondrial tail–anchored proteins. P5A-ATPase activity mediated the extraction of mistargeted proteins from the endoplasmic reticulum (ER). Cryo–electron microscopy structures of Saccharomyces cerevisiae Spf1 revealed a large, membrane-accessible substrate-binding pocket that alternately faced the ER lumen and cytosol and an endogenous substrate resembling an α-helical TM. Our results indicate that the P5A-ATPase could dislocate misinserted hydrophobic helices flanked by short basic segments from the ER. TM dislocation by the P5A-ATPase establishes an additional class of P-type ATPase substrates and may correct mistakes in protein targeting or topogenesis.


2006 ◽  
Vol 90 (1) ◽  
pp. 228-237 ◽  
Author(s):  
Wan-Chen Lin ◽  
Craig D. Blanchette ◽  
Timothy V. Ratto ◽  
Marjorie L. Longo

Sign in / Sign up

Export Citation Format

Share Document