scholarly journals Autoinhibition and regulation by phosphoinositides of ATP8B1, a human lipid flippase associated with intrahepatic cholestatic disorders

2021 ◽  
Author(s):  
Thibaud Dieudonne ◽  
Sara Abad Herrera ◽  
Michelle Juknaviciute Laursen ◽  
Maylis Lejeune ◽  
Charlott Stock ◽  
...  

P-type ATPases from the P4 subfamily (P4-ATPases) are primary active transporters that maintain lipid asymmetry in eukaryotic cell membranes by flipping lipids from the exoplasmic to the cytosolic leaflet. Mutations in several human P4-ATPase genes are associated with severe diseases. For instance, mutations in the ATP8B1 gene result in progressive familial intrahepatic cholestasis, a rare inherited disorder that usually progresses toward liver failure. ATP8B1 forms a binary complex with CDC50A and displays a broad specificity to glycerophospholipids, but regulatory mechanisms are unknown. Here, we report the cryo-EM structure of the human lipid flippase ATP8B1-CDC50A at 3.1 angstrom resolution. The lipid flippase complex is autoinhibited by the N- and C-termini of ATP8B1, which in concert form extensive interactions with the catalytic sites and flexible domain interfaces of ATP8B1. Consistently, ATP hydrolysis by the ATP8B1-CDC50A complex requires truncation of its C-terminus as well as the presence of phosphoinositides, with a marked preference for phosphatidylinositol-3,4,5-phosphate (PI(3,4,5)P3), and removal of both N- and C-termini results in full activation. Restored inhibition of ATP8B1 truncation constructs with a synthetic peptide mimicking the C-terminus further suggests molecular communication between N- and C-termini in the autoinhibition process and demonstrates that the regulatory mechanism can be interfered with by exogenous compounds. A conserved (G/A)(Y/F)AFS motif in the C-termini of several P4-ATPase subfamilies suggests that this mechanism is employed widely across P4-ATPase lipid flippases, including both plasma membrane and endomembrane P4-ATPases.

Author(s):  
Yilin He ◽  
Jinkun Xu ◽  
Xiaofei Wu ◽  
Long Li

AbstractType 4 P-type ATPases (P4-ATPases) are a group of key enzymes maintaining lipid asymmetry of eukaryotic membranes. Phospholipids are actively and selectively flipped by P4-ATPases from the exoplasmic leaflet to the cytoplasmic leaflet. How lipid flipping is coupled with ATP-hydrolysis by P4-ATPases is poorly understood. Here, we report the electron cryo-microscopy structures of a P4-ATPase, Dnf1-Cdc50 from Chaetomium thermophilum, which had been reconstituted into lipid nanodiscs and captured in two transport intermediate states. The structures reveal that transmembrane segment 1 of Dnf1 becomes highly flexible during lipid transport. The local lipid bilayers are distorted to facilitate the entry of the phospholipid substrates from the exoplasmic leaflet to a cross-membrane groove. During transport, the lipid substrates are relayed through four binding sites in the groove which constantly shields the lipid polar heads away from the hydrophobic environment of the membranes.


2019 ◽  
Vol 47 (5) ◽  
pp. 1247-1257 ◽  
Author(s):  
Mateusz Dyla ◽  
Sara Basse Hansen ◽  
Poul Nissen ◽  
Magnus Kjaergaard

Abstract P-type ATPases transport ions across biological membranes against concentration gradients and are essential for all cells. They use the energy from ATP hydrolysis to propel large intramolecular movements, which drive vectorial transport of ions. Tight coordination of the motions of the pump is required to couple the two spatially distant processes of ion binding and ATP hydrolysis. Here, we review our current understanding of the structural dynamics of P-type ATPases, focusing primarily on Ca2+ pumps. We integrate different types of information that report on structural dynamics, primarily time-resolved fluorescence experiments including single-molecule Förster resonance energy transfer and molecular dynamics simulations, and interpret them in the framework provided by the numerous crystal structures of sarco/endoplasmic reticulum Ca2+-ATPase. We discuss the challenges in characterizing the dynamics of membrane pumps, and the likely impact of new technologies on the field.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1456
Author(s):  
Amaravadhi Harikishore ◽  
Chui-Fann Wong ◽  
Priya Ragunathan ◽  
Dennis Litty ◽  
Volker Müller ◽  
...  

Mycobacteria regulate their energy (ATP) levels to sustain their survival even in stringent living conditions. Recent studies have shown that mycobacteria not only slow down their respiratory rate but also block ATP hydrolysis of the F-ATP synthase (α3:β3:γ:δ:ε:a:b:b’:c9) to maintain ATP homeostasis in situations not amenable for growth. The mycobacteria-specific α C-terminus (α533-545) has unraveled to be the major regulative of latent ATP hydrolysis. Its deletion stimulates ATPase activity while reducing ATP synthesis. In one of the six rotational states of F-ATP synthase, α533-545 has been visualized to dock deep into subunit γ, thereby blocking rotation of γ within the engine. The functional role(s) of this C-terminus in the other rotational states are not clarified yet and are being still pursued in structural studies. Based on the interaction pattern of the docked α533-545 region with subunit γ, we attempted to study the druggability of the α533-545 motif. In this direction, our computational work has led to the development of an eight-featured α533-545 peptide pharmacophore, followed by database screening, molecular docking, and pose selection, resulting in eleven hit molecules. ATP synthesis inhibition assays using recombinant ATP synthase as well as mycobacterial inverted membrane vesicles show that one of the hits, AlMF1, inhibited the mycobacterial F-ATP synthase in a micromolar range. The successful targeting of the α533-545-γ interaction motif demonstrates the potential to develop inhibitors targeting the α site to interrupt rotary coupling with ATP synthesis.


2013 ◽  
Vol 450 (1) ◽  
pp. 127-139 ◽  
Author(s):  
Debajyoti Dutta ◽  
Sudipta Bhattacharyya ◽  
Amlan Roychowdhury ◽  
Rupam Biswas ◽  
Amit Kumar Das

FabGs, or β-oxoacyl reductases, are involved in fatty acid synthesis. The reaction entails NADPH/NADH-mediated conversion of β-oxoacyl-ACP (acyl-carrier protein) into β-hydroxyacyl-ACP. HMwFabGs (high-molecular-weight FabG) form a phylogenetically separate group of FabG enzymes. FabG4, an HMwFabG from Mycobacterium tuberculosis, contains two distinct domains, an N-terminal ‘flavodoxintype’ domain and a C-terminal oxoreductase domain. The catalytically active C-terminal domain utilizes NADH to reduce β-oxoacyl-CoA to β-hydroxyacyl-CoA. In the present study the crystal structures of the FabG4–NADH binary complex and the FabG4–NAD+–hexanoyl-CoA ternary complex have been determined to understand the substrate specificity and catalytic mechanism of FabG4. This is the first report to demonstrate how FabG4 interacts with its coenzyme NADH and hexanoyl-CoA that mimics an elongating fattyacyl chain covalently linked with CoA. Structural analysis shows that the binding of hexanoyl-CoA within the active site cavity of FabG significantly differs from that of the C16 fattyacyl substrate bound to mycobacterial FabI [InhA (enoyl-ACP reductase)]. The ternary complex reveals that both loop I and loop II interact with the phosphopantetheine moiety of CoA or ACP to align the covalently linked fattyacyl substrate near the active site. Structural data ACP inhibition studies indicate that FabG4 can accept both CoA- and ACP-based fattyacyl substrates. We have also shown that in the FabG4 dimer Arg146 and Arg445 of one monomer interact with the C-terminus of the second monomer to play pivotal role in substrate association and catalysis.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sophie L. Mader ◽  
Abraham Lopez ◽  
Jannis Lawatscheck ◽  
Qi Luo ◽  
Daniel A. Rutz ◽  
...  

AbstractThe heat shock protein 90 (Hsp90) is a molecular chaperone that employs the free energy of ATP hydrolysis to control the folding and activation of several client proteins in the eukaryotic cell. To elucidate how the local ATPase reaction in the active site couples to the global conformational dynamics of Hsp90, we integrate here large-scale molecular simulations with biophysical experiments. We show that the conformational switching of conserved ion pairs between the N-terminal domain, harbouring the active site, and the middle domain strongly modulates the catalytic barrier of the ATP-hydrolysis reaction by electrostatic forces. Our combined findings provide a mechanistic model for the coupling between catalysis and protein dynamics in Hsp90, and show how long-range coupling effects can modulate enzymatic activity.


1995 ◽  
Vol 15 (3) ◽  
pp. 1382-1388 ◽  
Author(s):  
P J Lapinskas ◽  
K W Cunningham ◽  
X F Liu ◽  
G R Fink ◽  
V C Culotta

Mutants of Saccharomyces cerevisiae lacking a functional SOD1 gene encoding Cu/Zn superoxide dismutase (SOD) are sensitive to atmospheric levels of oxygen and are auxotrophic for lysine and methionine when grown in air. We have previously shown that these defects of SOD-deficient yeast cells can be overcome through mutations in either the BSD1 or BSD2 (bypass SOD defects) gene. In this study, the wild-type allele of BSD1 was cloned by functional complementation and was physically mapped to the left arm of chromosome VII. BSD1 is identical to PMR1, encoding a member of the P-type ATPase family that localizes to the Golgi apparatus. PMR1 is thought to function in calcium metabolism, and we provide evidence that PMR1 also participates in the homeostasis of manganese ions. Cells lacking a functional PMR1 gene accumulate elevated levels of intracellular manganese and are also extremely sensitive to manganese ion toxicity. We demonstrate that mutations in PMR1 bypass SOD deficiency through a mechanism that depends on extracellular manganese. Collectively, these findings indicate that oxidative damage in a eukaryotic cell can be prevented through alterations in manganese homeostasis.


2005 ◽  
Vol 387 (3) ◽  
pp. 859-863 ◽  
Author(s):  
Isabelle DIONNE ◽  
Stephen D. BELL

We describe the characterization of a family 4 UDG1 (uracil DNA glycosylase) from the crenarchaeote Sulfolobus solfataricus. UDG1 is found to have a marked preference for substrates containing a G:U base pair over either A:U or single-stranded uracil-containing DNA substrates. UDG1 is found to interact with the sliding clamp PCNA (proliferating cell nuclear antigen), and does so by a conserved motif in the C-terminus of the protein. S. solfataricus has a heterotrimeric PCNA, and only one of the subunits, PCNA3, interacts with UDG1. We have been unable to detect any stimulation of UDG activity by PCNA, in contrast with the observed effects of PCNA on a number of DNA metabolic enzymes. However, analysis of the effects of Sulfolobus chromatin proteins on UDG1 leads us to propose a mechanistic basis for coupling UDG1 to the replication fork.


Sign in / Sign up

Export Citation Format

Share Document