scholarly journals The environmental stress response causes ribosome loss in aneuploid yeast cells

2020 ◽  
Author(s):  
Allegra Terhorst ◽  
Arzu Sandikci ◽  
Abigail Keller ◽  
Charles A. Whittaker ◽  
Maitreya J. Dunham ◽  
...  

AbstractAneuploidy, a condition characterized by whole chromosome gains and losses, is often associated with significant cellular stress and decreased fitness. However, how cells respond to the aneuploid state has remained controversial. In aneuploid budding yeast, two opposing gene expression patterns have been reported: the “environmental stress response” (ESR) and the “common aneuploidy gene-expression” (CAGE) signature, in which many ESR genes are oppositely regulated. Here, we investigate and bring clarity to this controversy. We show that the CAGE signature is not an aneuploidy-specific gene expression signature but the result of normalizing the gene expression profile of actively proliferating aneuploid cells to that of euploid cells grown into stationary phase. Because growth into stationary phase is amongst the strongest inducers of the ESR, the ESR in aneuploid cells was masked when stationary phase euploid cells were used for normalization in transcriptomic studies. When exponentially growing euploid cells are used in gene expression comparisons with aneuploid cells, the CAGE signature is no longer evident in aneuploid cells. Instead, aneuploid cells exhibit the ESR. We further show that the ESR causes selective ribosome loss in aneuploid cells, providing an explanation for the decreased cellular density of aneuploid cells. We conclude that aneuploid budding yeast cells mount the ESR, rather than the CAGE signature, in response to aneuploidy-induced cellular stresses, resulting in selective ribosome loss. We propose that the ESR serves two purposes in aneuploid cells: protecting cells from aneuploidy-induced cellular stresses and preventing excessive cellular enlargement during slowed cell cycles by downregulating translation capacity.

2020 ◽  
Vol 117 (29) ◽  
pp. 17031-17040 ◽  
Author(s):  
Allegra Terhorst ◽  
Arzu Sandikci ◽  
Abigail Keller ◽  
Charles A. Whittaker ◽  
Maitreya J. Dunham ◽  
...  

Aneuploidy, a condition characterized by whole chromosome gains and losses, is often associated with significant cellular stress and decreased fitness. However, how cells respond to the aneuploid state has remained controversial. In aneuploid budding yeast, two opposing gene-expression patterns have been reported: the “environmental stress response” (ESR) and the “common aneuploidy gene-expression” (CAGE) signature, in which many ESR genes are oppositely regulated. Here, we investigate this controversy. We show that the CAGE signature is not an aneuploidy-specific gene-expression signature but the result of normalizing the gene-expression profile of actively proliferating aneuploid cells to that of euploid cells grown into stationary phase. Because growth into stationary phase is among the strongest inducers of the ESR, the ESR in aneuploid cells was masked when stationary phase euploid cells were used for normalization in transcriptomic studies. When exponentially growing euploid cells are used in gene-expression comparisons with aneuploid cells, the CAGE signature is no longer evident in aneuploid cells. Instead, aneuploid cells exhibit the ESR. We further show that the ESR causes selective ribosome loss in aneuploid cells, providing an explanation for the decreased cellular density of aneuploid cells. We conclude that aneuploid budding yeast cells mount the ESR, rather than the CAGE signature, in response to aneuploidy-induced cellular stresses, resulting in selective ribosome loss. We propose that the ESR serves two purposes in aneuploid cells: protecting cells from aneuploidy-induced cellular stresses and preventing excessive cellular enlargement during slowed cell cycles by down-regulating translation capacity.


2004 ◽  
Vol 15 (12) ◽  
pp. 5492-5502 ◽  
Author(s):  
Babette Schade ◽  
Gregor Jansen ◽  
Malcolm Whiteway ◽  
Karl D. Entian ◽  
David Y. Thomas

We have determined the transcriptional response of the budding yeast Saccharomyces cerevisiae to cold. Yeast cells were exposed to 10°C for different lengths of time, and DNA microarrays were used to characterize the changes in transcript abundance. Two distinct groups of transcriptionally modulated genes were identified and defined as the early cold response and the late cold response. A detailed comparison of the cold response with various environmental stress responses revealed a substantial overlap between environmental stress response genes and late cold response genes. In addition, the accumulation of the carbohydrate reserves trehalose and glycogen is induced during late cold response. These observations suggest that the environmental stress response (ESR) occurs during the late cold response. The transcriptional activators Msn2p and Msn4p are involved in the induction of genes common to many stress responses, and we show that they mediate the stress response pattern observed during the late cold response. In contrast, classical markers of the ESR were absent during the early cold response, and the transcriptional response of the early cold response genes was Msn2p/Msn4p independent. This implies that the cold-specific early response is mediated by a different and as yet uncharacterized regulatory mechanism.


2020 ◽  
Author(s):  
Michael C. Ayers ◽  
Zachary N. Sherman ◽  
Jennifer E.G. Gallagher

AbstractIn 2014, the coal cleaning chemical 4-methylcyclohexane methanol (MCHM) spilled into the water supply for 300,000 West Virginians. Initial toxicology tests showed relatively mild results, but the underlying effects on cellular biology were underexplored. Treated wildtype yeast cells grew poorly, but there was only a small decrease in cell viability. Cell cycle analysis revealed an absence of cells in S phase within thirty minutes of treatment. Cells accumulated in G1 over a six-hour time course, indicating arrest instead of death. A genetic screen of the haploid knockout collection revealed 329 high confidence genes required for optimal growth in MCHM. These genes encode three major cell processes: mitochondrial gene expression/translation, the vacuolar ATPase, and aromatic amino acid biosynthesis. The transcriptome showed an upregulation of pleiotropic drug response genes and amino acid biosynthetic genes and downregulation in ribosome biosynthesis. Analysis of these datasets pointed to environmental stress response activation upon treatment. Overlap in datasets included the aromatic amino acid genes ARO1, ARO3, and four of the five TRP genes. This implicated nutrient deprivation as the signal for stress response. Excess supplementation of nutrients and amino acids did not improve growth on MCHM, so the source of nutrient deprivation signal is still unclear. Reactive oxygen species and DNA damage were directly detected with MCHM treatment, but timepoints showed these accumulated slower than cells arrested. We propose that wildtype cells arrest from nutrient deprivation and survive, accumulating oxidative damage through the implementation of robust environmental stress responses.


2021 ◽  
pp. mbc.E21-03-0104
Author(s):  
Andrew J. Kane ◽  
Christopher M. Brennan ◽  
Acer E. Xu ◽  
Eric J. Solís ◽  
Allegra Terhorst ◽  
...  

Aneuploid yeast cells are in a chronic state of proteotoxicity yet do not constitutively induce the cytosolic unfolded protein response (HSR) by Heat shock factor 1 (Hsf1). Here, we demonstrate that an active environmental stress response (ESR), a hallmark of aneuploidy across different models, suppresses Hsf1 induction in models of single chromosome gain. Furthermore, engineered activation of the ESR in the absence of stress was sufficient to suppress Hsf1 activation in euploid cells by subsequent heat shock while increasing thermotolerance and blocking formation of heat-induced protein aggregates. Suppression of the ESR in aneuploid cells resulted in longer cell doubling times and decreased viability in the presence of additional proteotoxicity. Lastly, we show that in euploids Hsf1 induction by heat shock is curbed by the ESR. Strikingly, we found a similar relationship between the ESR and the HSR using an inducible model of aneuploidy. Our work explains a long-standing paradox in the field and provides new insights into conserved mechanisms of proteostasis with potential relevance to cancers associated with aneuploidy.


2019 ◽  
Author(s):  
Kieran Mace ◽  
Joanna Krakowiak ◽  
Hana El-Samad ◽  
David Pincus

ABSTRACTCells respond to changes in environmental conditions by activating signal transduction pathways and gene expression programs. Here we present a dataset to explore the relationship between environmental stresses, kinases, and global gene expression in yeast. We subjected 28 drug-sensitive kinase mutants to 10 environmental conditions in the presence of inhibitor and performed mRNA deep sequencing. With these data, we reconstructed canonical stress pathways and identified examples of crosstalk among pathways. The data also implicated numerous kinases in novel environment-specific roles. However, rather than regulating dedicated sets of target genes, individual kinases tuned the magnitude of induction of the environmental stress response (ESR) – a gene expression signature shared across the set of perturbations – in environment-specific ways. This suggests that the ESR integrates inputs from multiple sensory kinases to modulate gene expression and growth control. As an example, we provide experimental evidence that the high osmolarity glycerol pathway is a constitutive negative regulator of protein kinase A, a known inhibitor of the ESR. These results elaborate the central axis of cellular stress response signaling.


2004 ◽  
Vol 15 (2) ◽  
pp. 851-860 ◽  
Author(s):  
Adam Watson ◽  
Juan Mata ◽  
Jürg Bähler ◽  
Anthony Carr ◽  
Tim Humphrey

A coordinated transcriptional response to DNA-damaging agents is required to maintain genome stability. We have examined the global gene expression responses of the fission yeast Schizosaccharomyces pombe to ionizing radiation (IR) by using DNA microarrays. We identified ∼200 genes whose transcript levels were significantly altered at least twofold in response to 500 Gy of gamma IR in a temporally defined manner. The majority of induced genes were core environmental stress response genes, whereas the remaining genes define a transcriptional response to DNA damage in fission yeast. Surprisingly, few DNA repair and checkpoint genes were transcriptionally modulated in response to IR. We define a role for the stress-activated mitogen-activated protein kinase Sty1/Spc1 and the DNA damage checkpoint kinase Rad3 in regulating core environmental stress response genes and IR-specific response genes, both independently and in concert. These findings suggest a complex network of regulatory pathways coordinate gene expression responses to IR in eukaryotes.


Sign in / Sign up

Export Citation Format

Share Document