scholarly journals Oxidative Stress Responses and Nutrient Starvation in MCHM Treated Saccharomyces cerevisiae

2020 ◽  
Author(s):  
Michael C. Ayers ◽  
Zachary N. Sherman ◽  
Jennifer E.G. Gallagher

AbstractIn 2014, the coal cleaning chemical 4-methylcyclohexane methanol (MCHM) spilled into the water supply for 300,000 West Virginians. Initial toxicology tests showed relatively mild results, but the underlying effects on cellular biology were underexplored. Treated wildtype yeast cells grew poorly, but there was only a small decrease in cell viability. Cell cycle analysis revealed an absence of cells in S phase within thirty minutes of treatment. Cells accumulated in G1 over a six-hour time course, indicating arrest instead of death. A genetic screen of the haploid knockout collection revealed 329 high confidence genes required for optimal growth in MCHM. These genes encode three major cell processes: mitochondrial gene expression/translation, the vacuolar ATPase, and aromatic amino acid biosynthesis. The transcriptome showed an upregulation of pleiotropic drug response genes and amino acid biosynthetic genes and downregulation in ribosome biosynthesis. Analysis of these datasets pointed to environmental stress response activation upon treatment. Overlap in datasets included the aromatic amino acid genes ARO1, ARO3, and four of the five TRP genes. This implicated nutrient deprivation as the signal for stress response. Excess supplementation of nutrients and amino acids did not improve growth on MCHM, so the source of nutrient deprivation signal is still unclear. Reactive oxygen species and DNA damage were directly detected with MCHM treatment, but timepoints showed these accumulated slower than cells arrested. We propose that wildtype cells arrest from nutrient deprivation and survive, accumulating oxidative damage through the implementation of robust environmental stress responses.

2020 ◽  
Vol 10 (12) ◽  
pp. 4665-4678
Author(s):  
Michael C. Ayers ◽  
Zachary N. Sherman ◽  
Jennifer E. G. Gallagher

In 2014, the coal cleaning chemical 4-methylcyclohexane methanol (MCHM) spilled into the water supply for 300,000 West Virginians. Initial toxicology tests showed relatively mild results, but the underlying effects on cellular biology were underexplored. Treated wildtype yeast cells grew poorly, but there was only a small decrease in cell viability. Cell cycle analysis revealed an absence of cells in S phase within thirty minutes of treatment. Cells accumulated in G1 over a six-hour time course, indicating arrest instead of death. A genetic screen of the haploid knockout collection revealed 329 high confidence genes required for optimal growth in MCHM. These genes encode three major cell processes: mitochondrial gene expression/translation, the vacuolar ATPase, and aromatic amino acid biosynthesis. The transcriptome showed an upregulation of pleiotropic drug response genes and amino acid biosynthetic genes and downregulation in ribosome biosynthesis. Analysis of these datasets pointed to environmental stress response activation upon treatment. Overlap in datasets included the aromatic amino acid genes ARO1, ARO3, and four of the five TRP genes. This implicated nutrient deprivation as the signal for stress response. Excess supplementation of nutrients and amino acids did not improve growth on MCHM, so the source of nutrient deprivation signal is still unclear. Reactive oxygen species and DNA damage were directly detected with MCHM treatment, but timepoints showed these accumulated slower than cells arrested. We propose that wildtype cells arrest from nutrient deprivation and survive, accumulating oxidative damage through the implementation of robust environmental stress responses.


2004 ◽  
Vol 15 (12) ◽  
pp. 5492-5502 ◽  
Author(s):  
Babette Schade ◽  
Gregor Jansen ◽  
Malcolm Whiteway ◽  
Karl D. Entian ◽  
David Y. Thomas

We have determined the transcriptional response of the budding yeast Saccharomyces cerevisiae to cold. Yeast cells were exposed to 10°C for different lengths of time, and DNA microarrays were used to characterize the changes in transcript abundance. Two distinct groups of transcriptionally modulated genes were identified and defined as the early cold response and the late cold response. A detailed comparison of the cold response with various environmental stress responses revealed a substantial overlap between environmental stress response genes and late cold response genes. In addition, the accumulation of the carbohydrate reserves trehalose and glycogen is induced during late cold response. These observations suggest that the environmental stress response (ESR) occurs during the late cold response. The transcriptional activators Msn2p and Msn4p are involved in the induction of genes common to many stress responses, and we show that they mediate the stress response pattern observed during the late cold response. In contrast, classical markers of the ESR were absent during the early cold response, and the transcriptional response of the early cold response genes was Msn2p/Msn4p independent. This implies that the cold-specific early response is mediated by a different and as yet uncharacterized regulatory mechanism.


2020 ◽  
Vol 117 (29) ◽  
pp. 17031-17040 ◽  
Author(s):  
Allegra Terhorst ◽  
Arzu Sandikci ◽  
Abigail Keller ◽  
Charles A. Whittaker ◽  
Maitreya J. Dunham ◽  
...  

Aneuploidy, a condition characterized by whole chromosome gains and losses, is often associated with significant cellular stress and decreased fitness. However, how cells respond to the aneuploid state has remained controversial. In aneuploid budding yeast, two opposing gene-expression patterns have been reported: the “environmental stress response” (ESR) and the “common aneuploidy gene-expression” (CAGE) signature, in which many ESR genes are oppositely regulated. Here, we investigate this controversy. We show that the CAGE signature is not an aneuploidy-specific gene-expression signature but the result of normalizing the gene-expression profile of actively proliferating aneuploid cells to that of euploid cells grown into stationary phase. Because growth into stationary phase is among the strongest inducers of the ESR, the ESR in aneuploid cells was masked when stationary phase euploid cells were used for normalization in transcriptomic studies. When exponentially growing euploid cells are used in gene-expression comparisons with aneuploid cells, the CAGE signature is no longer evident in aneuploid cells. Instead, aneuploid cells exhibit the ESR. We further show that the ESR causes selective ribosome loss in aneuploid cells, providing an explanation for the decreased cellular density of aneuploid cells. We conclude that aneuploid budding yeast cells mount the ESR, rather than the CAGE signature, in response to aneuploidy-induced cellular stresses, resulting in selective ribosome loss. We propose that the ESR serves two purposes in aneuploid cells: protecting cells from aneuploidy-induced cellular stresses and preventing excessive cellular enlargement during slowed cell cycles by down-regulating translation capacity.


2021 ◽  
pp. mbc.E21-03-0104
Author(s):  
Andrew J. Kane ◽  
Christopher M. Brennan ◽  
Acer E. Xu ◽  
Eric J. Solís ◽  
Allegra Terhorst ◽  
...  

Aneuploid yeast cells are in a chronic state of proteotoxicity yet do not constitutively induce the cytosolic unfolded protein response (HSR) by Heat shock factor 1 (Hsf1). Here, we demonstrate that an active environmental stress response (ESR), a hallmark of aneuploidy across different models, suppresses Hsf1 induction in models of single chromosome gain. Furthermore, engineered activation of the ESR in the absence of stress was sufficient to suppress Hsf1 activation in euploid cells by subsequent heat shock while increasing thermotolerance and blocking formation of heat-induced protein aggregates. Suppression of the ESR in aneuploid cells resulted in longer cell doubling times and decreased viability in the presence of additional proteotoxicity. Lastly, we show that in euploids Hsf1 induction by heat shock is curbed by the ESR. Strikingly, we found a similar relationship between the ESR and the HSR using an inducible model of aneuploidy. Our work explains a long-standing paradox in the field and provides new insights into conserved mechanisms of proteostasis with potential relevance to cancers associated with aneuploidy.


2020 ◽  
Author(s):  
Allegra Terhorst ◽  
Arzu Sandikci ◽  
Abigail Keller ◽  
Charles A. Whittaker ◽  
Maitreya J. Dunham ◽  
...  

AbstractAneuploidy, a condition characterized by whole chromosome gains and losses, is often associated with significant cellular stress and decreased fitness. However, how cells respond to the aneuploid state has remained controversial. In aneuploid budding yeast, two opposing gene expression patterns have been reported: the “environmental stress response” (ESR) and the “common aneuploidy gene-expression” (CAGE) signature, in which many ESR genes are oppositely regulated. Here, we investigate and bring clarity to this controversy. We show that the CAGE signature is not an aneuploidy-specific gene expression signature but the result of normalizing the gene expression profile of actively proliferating aneuploid cells to that of euploid cells grown into stationary phase. Because growth into stationary phase is amongst the strongest inducers of the ESR, the ESR in aneuploid cells was masked when stationary phase euploid cells were used for normalization in transcriptomic studies. When exponentially growing euploid cells are used in gene expression comparisons with aneuploid cells, the CAGE signature is no longer evident in aneuploid cells. Instead, aneuploid cells exhibit the ESR. We further show that the ESR causes selective ribosome loss in aneuploid cells, providing an explanation for the decreased cellular density of aneuploid cells. We conclude that aneuploid budding yeast cells mount the ESR, rather than the CAGE signature, in response to aneuploidy-induced cellular stresses, resulting in selective ribosome loss. We propose that the ESR serves two purposes in aneuploid cells: protecting cells from aneuploidy-induced cellular stresses and preventing excessive cellular enlargement during slowed cell cycles by downregulating translation capacity.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1261
Author(s):  
Péter Pálfi ◽  
László Bakacsy ◽  
Henrietta Kovács ◽  
Ágnes Szepesi

Hypusination is a unique posttranslational modification of eIF5A, a eukaryotic translation factor. Hypusine is a rare amino acid synthesized in this process and is mediated by two enzymes, deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). Despite the essential participation of this conserved eIF5A protein in plant development and stress responses, our knowledge of its proper function is limited. In this review, we demonstrate the main findings regarding how eIF5A and hypusination could contribute to plant-specific responses in growth and stress-related processes. Our aim is to briefly discuss the plant-specific details of hypusination and decipher those signal pathways which can be effectively modified by this process. The diverse functions of eIF5A isoforms are also discussed in this review.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1276-1276
Author(s):  
Nathan Mbong ◽  
John E. Dick ◽  
Peter Van Galen ◽  
Antonija Kreso ◽  
Elvin Wagenblast ◽  
...  

Abstract Lifelong maintenance of the blood system requires equilibrium between clearance of damaged hematopoietic stem cells (HSCs) and long-term survival of the HSC pool. Perturbations of cellular homeostasis such as nutrient deprivation, irradiation, and endoplasmic reticulum stress can result in HSC loss. However, HSCs must survive low-level stressors in order to sustain lifelong replenishment of the hematopoietic system. It is poorly understood how human HSCs balance apoptosis with survival in the context of basal stress, and how adaptive signalling is regulated in leukemia stem cells (LSCs). The Integrated Stress Response (ISR) is an adaptive pathway that can protect cells against stressors such as ROS, nutrient deprivation and misfolded proteins. To assess the expression levels of key ISR pathway components, we analyzed the proteome of purified human HSCs and progenitor cells from cord blood (CB). Quantitative label-free mass spectrometry revealed lower expression of eIF2α, eIF2β and eIF2γ subunits in HSCs compared to downstream progenitors. Furthermore, activated-transcription factor 4 (ATF4) mRNA is highly expressed in HSCs compared to progenitors. Similar to our findings in normal CB cells, analysis of acute myeloid leukemia (AML) patient samples revealed lower protein levels of eIF2α, eIF2β and eIF2γ in phenotypically primitive (CD34+CD38-) compared to differentiated (CD34+CD38+) AML cell populations. These results suggest that primitive cells in normal hematopoiesis and AML are primed for ISR activation.To assess ISR activity in human HSPCs, we used an ATF4 lentiviral reporter (ATF4rep) that measures ISR-induced ATF4 translation. We subjected ATF4rep-transduced CD34+ CB cells to hypoxia and amino acid deprivation, and found that valine depletion strongly induced ATF4rep activity. ATF4rep upregulation was abolished in the presence of an eIF2αS52A mutant that cannot be phosphorylated. Furthermore, knockdown of eIF2α, eIF2β or eIF2γ subunits in CD34+ CB cells increased ATF4rep activity. Thus, low levels of eIF2α, eIF2β or eIF2γ result in efficient ATF4 translation, and nutrient deprivation upregulates ATF4 through eIF2α phosphorylation. We assessed the effect of ATF4 upregulation on CB cell proliferation and survival. Following knockdown of ATF4 mRNA in CD34+ CB cells, the cells were incubated in valine deficient media to induce translational upregulation of ATF4. Valine depletion of shCTRL-transduced cells for 2 days did not affect proliferation or apoptosis, as measured by EdU incorporation or Annexin-V. In contrast, valine depletion of shATF4-transduced cells resulted in decreased proliferation (2-fold, P = 0.0004) and increased apoptosis (4-fold, P < 0.0001,). Thus, ATF4 promotes survival of primitive CD34+ CB cells undergoing valine depletion.We performed in vivo xenograft studies to examine the ISR activity in the best available setting to approximate homeostatic conditions for human HSPCs. Transplantation of ATF4rep-transduced CB cells showed that human HSPCs in the mouse bone marrow maintained a 2.4-fold higher ATF4rep activity compared to downstream progenitors (P = 0.0002). ATF4rep activity further declined in mature monocytes, granulocytes and B-cells (13-fold, P < 0.0001). To determine if high ISR activity is associated with improved HSC function, we transplanted lin- CB cells expressing high ATF4rep activity (GFP-high) and low ATF4rep activity (GFP-low) into mice. The level of engraftment as well as the number of engrafted mice was increased from GFP-high cells compared to GFP-low cells (P = 0.001). The hierarchical structure of normal hematopoiesis is partially maintained in AML. We evaluated ATF4rep expression in the malignant hierarchy and found that 4/5 patient samples had higher ATF4rep expression in CD34+ cells compared to CD34- cells. Furthermore, serial transplantation of ATF4rep-transduced cells showed higher engraftment from GFP-high compared to GFP-low cells ( P < 0.0001). Thus, primary human AML cells that possess high ISR activity are enriched for LSC function.Our data establish that the adaptive ISR pathway plays a key role in maintaining homeostasis of normal and malignant stem cells. We show that Amino acid deprivation activates the ISR in human HSPCs resulting in ATF4-dependent pro-survival signals. In an unperturbed state, HSCs are in a state of primed ISR activity, mechanistically maintained by eIF2 scarcity and high ATF4 levels. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document