scholarly journals Basic prediction methodology for covid-19: estimation and sensitivity considerations

Author(s):  
Tom Britton

SummaryThe purpose of the present paper is to present simple estimation and prediction methods for basic quantities in an emerging epidemic like the ongoing covid-10 pandemic. The simple methods have the advantage that relations between basic quantities become more transparent, thus shedding light to which quantities have biggest impact on predictions, with the additional conclusion that uncertainties in these quantities carry over to high uncertainty also in predictions.A simple non-parametric prediction method for future cumulative case fatalities, as well as future cumulative incidence of infections (assuming a given infection fatality risk f), is presented. The method uses cumulative reported case fatalities up to present time as input data. It is also described how the introduction of preventive measures of a given magnitude ρ will affect the two incidence predictions, using basic theory of epidemic models. This methodology is then reversed, thus enabling estimation of the preventive magnitude ρ, and of the resulting effective reproduction number RE. However, the effects of preventive measures only start affecting case fatalities some 3-4 weeks later, so estimates are only available after this time has elapsed. The methodology is applicable in the early stage of an outbreak, before, say, 10% of the community have been infected.Beside giving simple estimation and prediction tools for an ongoing epidemic, another important conclusion lies in the observation that the two quantities f (infection fatality risk) and ρ (the magnitude of preventive measures) have very big impact on predictions. Further, both of these quantities currently have very high uncertainty: current estimates of f lie in the range 0.2% up to 2% ([9], [7]), and the overall effect of several combined preventive measures is clearly very uncertain.The two main findings from the paper are hence that, a) any prediction containing f, and/or some preventive measures, contain a large amount of uncertainty (which is usually not acknowledged well enough), and b) obtaining more accurate estimates of in particular f, should be highly prioritized. Seroprevalence testing of random samples in a community where the epidemic has ended are urgently needed.

Author(s):  
Tom Britton

AbstractAn important task during the current Covid-19 pandemic is to predict the remainder of the epidemic, both without preventive measures and with. In the current paper we address this question using a simple estimation-prediction method. The input is the observed initial doubling time and a known value of R0. The simple General epidemic model is then fitted, and time calibration to calendar time is done using the observed number of case fatalities, together with estimates of the time between infection to death and the infection fatality risk. Finally, predictions are made assuming no change of behaviour, as well as for the situation where preventive measures are put in place at one specific time-point. The overall effect of the preventive measures is assumed to be known, or else estimated from the observed increased doubling time after preventive measures are put in place. The predictions are highly sensitive to the doubling times without and with preventive measures, sensitive to R0, but less sensitive to the estimates used for time-calibration: observed number of case fatalities, typical time between infection and death, and the infection fatality risk. The method is applied to the urban area of Stockholm, and predictions show that the peak of infections appear in mid-April and infections start settling in May.


2017 ◽  
Vol 24 (4) ◽  
pp. 521-529
Author(s):  
Junjie Ye ◽  
Yuanying Qiu ◽  
Yumin He ◽  
Juan Ma ◽  
Xinglong Zhang ◽  
...  

AbstractStress-strain analysis has been an interesting issue for the mechanical design of composite structures. In this paper, a three-dimensional mechanical model based on generalized method of cells is presented to study the thermal residual stress and loading rates influence on the mechanical responses of short fiber-reinforced (SFR) composites. The effects of the fiber shape on the elastic constant of the SFR were investigated. To verify the prediction method, the calculated elastic modulus was compared with the results of finite element method. On this basis, a unified constitutive model is used to acquire the nonlinear properties of matrix materials. For comparison, SFR composites with and without consideration of thermal residual stress influences on the nonlinear responses are both considered. The results show that the distinct difference for SFR composites can be found at an early stage of loading. Meanwhile, the thermal residual stress influences on the mechanical behaviors present two characteristic stages.


2015 ◽  
Vol 144 (8) ◽  
pp. 1579-1583
Author(s):  
J. Y. WONG ◽  
P. WU ◽  
E. H. Y. LAU ◽  
T. K. TSANG ◽  
V. J. FANG ◽  
...  

SUMMARYDuring the early stage of an epidemic, timely and reliable estimation of the severity of infections are important for predicting the impact that the influenza viruses will have in the population. We obtained age-specific deaths and hospitalizations for patients with laboratory-confirmed H1N1pdm09 infections from June 2009 to December 2009 in Hong Kong. We retrospectively obtained the real-time estimates of the hospitalization fatality risk (HFR), using crude estimation or allowing for right-censoring for final status in some patients. Models accounting for right-censoring performed better than models without adjustments. The risk of deaths in hospitalized patients with confirmed H1N1pdm09 increased with age. Reliable estimates of the HFR could be obtained before the peak of the first wave of H1N1pdm09 in young and middle-aged adults but after the peak in the elderly. In the next influenza pandemic, timely estimation of the HFR will contribute to risk assessment and disease control.


2007 ◽  
Vol 17 (supp01) ◽  
pp. 1693-1719 ◽  
Author(s):  
ANNA MARCINIAK-CZOCHRA ◽  
MAREK KIMMEL

The generally accepted Moolgavkar's theory of carcinogenesis assumes that all cancers are clonal, i.e. that they arise from progressive genetic deregulation in a cell pedigree originating from a single ancestral cell.18 However, recently the clonal theory has been challenged by the field theory of carcinogenesis, which admits the possibility of simultaneous changes in tissue subject to carcinogenic agents, such as tobacco smoke in lung cancer. Axelrod et al.1 formulated a more detailed framework, in which partially transformed cells depend in a mutualistic way on growth factors they produce, in this way enabling these cells to proliferate and undergo further transformations. On the other hand, the field theory assumes spatial distribution of precancerous cells and indeed there exists evidence that early-stage precancerous lesions in lung cancer progress along linear, tubular, or irregular surface structures. This seems to be the case for the atypical adenomatous hyperplasia (AAH),10 a likely precursor of adenocarcinoma of the lung. In this paper we explore the consequences of linking the model of spatial growth of precancerous cells,12 with the mutualistic hypothesis. We investigate the solutions of the model using analytical and computational techniques. The picture emerging from our modelling indicates that production of growth factors by cells considered may lead to diffusion-driven instability, which in turn may lead either to decay of both population, or to emergence of local growth foci, represented by spike-like solutions. Mutualism may, in some situations, increase the stability of solutions. One important conclusion is that models of field carcinogenesis, which include spatial effects, generally have very different behaviour compared to ODE models.


2017 ◽  
Vol 18 (11) ◽  
pp. 3168-3178 ◽  
Author(s):  
Jun Zhang ◽  
Dayong Shen ◽  
Lai Tu ◽  
Fan Zhang ◽  
Chengzhong Xu ◽  
...  

2011 ◽  
Vol 80 (4) ◽  
pp. 390-395 ◽  
Author(s):  
Mitsunori Iwasaki ◽  
Hiroshi Fukamachi ◽  
Keiko Satoh ◽  
Hirohisa Nesumi ◽  
Terutaka Yoshioka

Sign in / Sign up

Export Citation Format

Share Document