scholarly journals Low-frequency neural tracking of natural speech envelope reflects evoked responses to acoustic edges, not oscillatory entrainment

2020 ◽  
Author(s):  
Katsuaki Kojima ◽  
Yulia Oganian ◽  
Chang Cai ◽  
Anne Findlay ◽  
Edward Chang ◽  
...  

AbstractThe amplitude envelope of speech is crucial for accurate comprehension, and several studies have shown that the phase of neural activity in the theta-delta bands (1 - 10 Hz) tracks the phase of the speech amplitude envelope during listening, a process referred to as envelope tracking. However, the mechanisms underlying envelope tracking have been heavily debated. A dominant model posits that envelope tracking reflects continuous entrainment of endogenous low-frequency oscillations to the speech envelope. However, it has proven challenging to distinguish this from the alternative that envelope tracking reflects evoked responses to acoustic landmarks within the envelope. Here we recorded magnetoencephalography while participants listened to natural and slowed speech to test two critical predictions of the entrainment model: (1) that the frequency range of phase-locking reflects the stimulus speech rate and (2) that an entrained oscillator will resonate for multiple cycles after a landmark-driven phase reset. We found that peaks in the rate of envelope change, acoustic edges, induced evoked responses and theta phase locking. Crucially, the frequency range of this phase locking was independent of the speech rate and transient, in line with the evoked response account. Further comparisons between regular and slowed speech revealed that encoding of acoustic edge magnitudes was invariant to contextual speech rate, demonstrating that it was normalized for speech rate. Taken together, our results show that the evoked response model provides a better account of neural phase locking to the speech envelope than oscillatory entrainment.

Author(s):  
Kevin D. Prinsloo ◽  
Edmund C. Lalor

AbstractIn recent years research on natural speech processing has benefited from recognizing that low frequency cortical activity tracks the amplitude envelope of natural speech. However, it remains unclear to what extent this tracking reflects speech-specific processing beyond the analysis of the stimulus acoustics. In the present study, we aimed to disentangle contributions to cortical envelope tracking that reflect general acoustic processing from those that are functionally related to processing speech. To do so, we recorded EEG from subjects as they listened to “auditory chimeras” – stimuli comprised of the temporal fine structure (TFS) of one speech stimulus modulated by the amplitude envelope (ENV) of another speech stimulus. By varying the number of frequency bands used in making the chimeras, we obtained some control over which speech stimulus was recognized by the listener. No matter which stimulus was recognized, envelope tracking was always strongest for the ENV stimulus, indicating a dominant contribution from acoustic processing. However, there was also a positive relationship between intelligibility and the tracking of the perceived speech, indicating a contribution from speech specific processing. These findings were supported by a follow-up analysis that assessed envelope tracking as a function of the (estimated) output of the cochlea rather than the original stimuli used in creating the chimeras. Finally, we sought to isolate the speech-specific contribution to envelope tracking using forward encoding models and found that indices of phonetic feature processing tracked reliably with intelligibility. Together these results show that cortical speech tracking is dominated by acoustic processing, but also reflects speech-specific processing.This work was supported by a Career Development Award from Science Foundation Ireland (CDA/15/3316) and a grant from the National Institute on Deafness and Other Communication Disorders (DC016297). The authors thank Dr. Aaron Nidiffer, Dr. Aisling O’Sullivan, Thomas Stoll and Lauren Szymula for assistance with data collection, and Dr. Nathaniel Zuk, Dr. Aaron Nidiffer, Dr. Aisling O’Sullivan for helpful comments on this manuscript.Significance StatementActivity in auditory cortex is known to dynamically track the energy fluctuations, or amplitude envelope, of speech. Measures of this tracking are now widely used in research on hearing and language and have had a substantial influence on theories of how auditory cortex parses and processes speech. But, how much of this speech tracking is actually driven by speech-specific processing rather than general acoustic processing is unclear, limiting its interpretability and its usefulness. Here, by merging two speech stimuli together to form so-called auditory chimeras, we show that EEG tracking of the speech envelope is dominated by acoustic processing, but also reflects linguistic analysis. This has important implications for theories of cortical speech tracking and for using measures of that tracking in applied research.


1971 ◽  
Vol 36 (4) ◽  
pp. 527-537 ◽  
Author(s):  
Norman P. Erber

Two types of special hearing aid have been developed recently to improve the reception of speech by profoundly deaf children. In a different way, each special system provides greater low-frequency acoustic stimulation to deaf ears than does a conventional hearing aid. One of the devices extends the low-frequency limit of amplification; the other shifts high-frequency energy to a lower frequency range. In general, previous evaluations of these special hearing aids have obtained inconsistent or inconclusive results. This paper reviews most of the published research on the use of special hearing aids by deaf children, summarizes several unpublished studies, and suggests a set of guidelines for future evaluations of special and conventional amplification systems.


1991 ◽  
Vol 34 (2) ◽  
pp. 415-426 ◽  
Author(s):  
Richard L. Freyman ◽  
G. Patrick Nerbonne ◽  
Heather A. Cote

This investigation examined the degree to which modification of the consonant-vowel (C-V) intensity ratio affected consonant recognition under conditions in which listeners were forced to rely more heavily on waveform envelope cues than on spectral cues. The stimuli were 22 vowel-consonant-vowel utterances, which had been mixed at six different signal-to-noise ratios with white noise that had been modulated by the speech waveform envelope. The resulting waveforms preserved the gross speech envelope shape, but spectral cues were limited by the white-noise masking. In a second stimulus set, the consonant portion of each utterance was amplified by 10 dB. Sixteen subjects with normal hearing listened to the unmodified stimuli, and 16 listened to the amplified-consonant stimuli. Recognition performance was reduced in the amplified-consonant condition for some consonants, presumably because waveform envelope cues had been distorted. However, for other consonants, especially the voiced stops, consonant amplification improved recognition. Patterns of errors were altered for several consonant groups, including some that showed only small changes in recognition scores. The results indicate that when spectral cues are compromised, nonlinear amplification can alter waveform envelope cues for consonant recognition.


2001 ◽  
Vol 29 (4) ◽  
pp. 258-268 ◽  
Author(s):  
G. Jianmin ◽  
R. Gall ◽  
W. Zuomin

Abstract A variable parameter model to study dynamic tire responses is presented. A modified device to measure terrain roughness is used to measure dynamic damping and stiffness characteristics of rolling tires. The device was used to examine the dynamic behavior of a tire in the speed range from 0 to 10 km/h. The inflation pressure during the tests was adjusted to 160, 240, and 320 kPa. The vertical load was 5.2 kN. The results indicate that the damping and stiffness decrease with velocity. Regression formulas for the non-linear experimental damping and stiffness are obtained. These results can be used as input parameters for vehicle simulation to evaluate the vehicle's driving and comfort performance in the medium-low frequency range (0–100 Hz). This way it can be important for tire design and the forecasting of the dynamic behavior of tires.


2021 ◽  
Vol 11 (4) ◽  
pp. 1932
Author(s):  
Weixuan Wang ◽  
Qinyan Xing ◽  
Qinghao Yang

Based on the newly proposed generalized Galerkin weak form (GGW) method, a two-step time integration method with controllable numerical dissipation is presented. In the first sub-step, the GGW method is used, and in the second sub-step, a new parameter is introduced by using the idea of a trapezoidal integral. According to the numerical analysis, it can be concluded that this method is unconditionally stable and its numerical damping is controllable with the change in introduced parameters. Compared with the GGW method, this two-step scheme avoids the fast numerical dissipation in a low-frequency range. To highlight the performance of the proposed method, some numerical problems are presented and illustrated which show that this method possesses superior accuracy, stability and efficiency compared with conventional trapezoidal rule, the Wilson method, and the Bathe method. High accuracy in a low-frequency range and controllable numerical dissipation in a high-frequency range are both the merits of the method.


Geophysics ◽  
1992 ◽  
Vol 57 (6) ◽  
pp. 854-859 ◽  
Author(s):  
Xiao Ming Tang

A new technique for measuring elastic wave attenuation in the frequency range of 10–150 kHz consists of measuring low‐frequency waveforms using two cylindrical bars of the same material but of different lengths. The attenuation is obtained through two steps. In the first, the waveform measured within the shorter bar is propagated to the length of the longer bar, and the distortion of the waveform due to the dispersion effect of the cylindrical waveguide is compensated. The second step is the inversion for the attenuation or Q of the bar material by minimizing the difference between the waveform propagated from the shorter bar and the waveform measured within the longer bar. The waveform inversion is performed in the time domain, and the waveforms can be appropriately truncated to avoid multiple reflections due to the finite size of the (shorter) sample, allowing attenuation to be measured at long wavelengths or low frequencies. The frequency range in which this technique operates fills the gap between the resonant bar measurement (∼10 kHz) and ultrasonic measurement (∼100–1000 kHz). By using the technique, attenuation values in a PVC (a highly attenuative) material and in Sierra White granite were measured in the frequency range of 40–140 kHz. The obtained attenuation values for the two materials are found to be reliable and consistent.


2019 ◽  
Vol 9 (15) ◽  
pp. 3157 ◽  
Author(s):  
O ◽  
Jin ◽  
Choi

In this paper, we propose a compact four-port coplanar antenna for cognitive radio applications. The proposed antenna consists of a coplanar waveguide (CPW)-fed ultra-wideband (UWB) antenna and three inner rectangular loop antennas. The dimensions of the proposed antenna are 42 mm × 50 mm × 0.8 mm. The UWB antenna is used for spectrum sensing and fully covers the UWB spectrum of 3.1–10.6 GHz. The three loop antennas cover the UWB frequency band partially for communication purposes. The first loop antenna for the low frequency range operates from 2.96 GHz to 5.38 GHz. The second loop antenna is in charge of the mid band from 5.31 GHz to 8.62 GHz. The third antenna operates from 8.48 GHz to 11.02 GHz, which is the high-frequency range. A high isolation level (greater than 17.3 dB) is realized among the UWB antenna and three loop antennas without applying any additional decoupling structures. The realized gains of the UWB antenna and three loop antennas are greater than 2.7 dBi and 1.38 dBi, respectively.


Sign in / Sign up

Export Citation Format

Share Document