scholarly journals The enhancement of activity rescues the establishment of Mecp2 null neuronal phenotypes

2020 ◽  
Author(s):  
Linda Scaramuzza ◽  
Giuseppina De Rocco ◽  
Genni Desiato ◽  
Clementina Cobolli Gigli ◽  
Martina Chiacchiaretta ◽  
...  

AbstractMecp2 deficiency, the gene responsible for Rett syndrome (RTT), affects brain maturation by impairing neuronal activity, transcription and morphology. These three elements are physiologically linked in a feed-forward cycle where neuronal activity modulates transcription and morphology to further increase network maturity. We hypothesized that the reduced activity displayed by maturing Mecp2 null neurons during development could perturb such cycle, sustaining an improper transcriptional program that, ultimately, impairs neuronal maturation. Accordingly, we show that by enhancing activity within an early time window, Ampakine redirects, in vitro, the development of null neuronal networks towards more physiological routes. Similarly, the administration of the drug to newborn null offspring delays the progression of symptoms, significantly prolonging life span. Our data highlights the role of altered neuronal activity during the establishment of Mecp2 null networks and the importance of such early defects to the typically poor maturity of RTT brain functions in adulthood. We propose the existence of an “early molecular phase” of Rett syndrome, a detailed description of which might disclose relevant targets for new rescue treatments.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Linh Le ◽  
Lingzi Niu ◽  
Matthew J. Barter ◽  
David A. Young ◽  
Tamas Dalmay ◽  
...  

AbstractMicroRNAs have been shown to play a role in cartilage development, homeostasis and breakdown during osteoarthritis. We previously identified miR-3085 in humans as a chondrocyte-selective microRNA, however it could not be detected by Northern blot. The aim of the current study was to prove that miR-3085 is a microRNA and to investigate the function of miR-3085 in signaling pathways relevant to cartilage homeostasis and osteoarthritis. Here, we confirm that miR-3085 is a microRNA and not another class of small RNA using (1) a pre-miR hairpin maturation assay, (2) expression levels in a Dicer null cell line, and (3) Ago2 pulldown. MicroRNA-3085-3p is expressed more highly in micromass than monolayer cultured chondrocytes. Transfection of miR-3085-3p into chondrocytes decreases expression of COL2A1 and ACAN, both of which are validated as direct targets of miR-3085-3p. Interleukin-1 induces the expression of miR-3085-3p, at least in part via NFκB. In a feed-forward mechanism, miR-3085-3p then potentiates NFκB signaling. However, at early time points after transfection, its action appears to be inhibitory. MyD88 has been shown to be a direct target of miR-3085-3p and may be responsible for the early inhibition of NFκB signaling. However, at later time points, MyD88 knockdown remains inhibitory and so other functions of miR-3085-3p are clearly dominant. TGFβ1 also induces the expression of miR-3085-3p, but in this instance, it exerts a feedback inhibition on signaling with SMAD3 and SMAD4 shown to be direct targets. This in vitro analysis shows that miR-3085-3p functions in chondrocytes to induce IL-1-signaling, reduce TGFβ1 signaling, and inhibit expression of matrix genes. These data suggest that miR-3085-3p has a role in chondrocyte function and could contribute to the process of osteoarthritis.


2013 ◽  
Vol 94 (8) ◽  
pp. 1761-1768 ◽  
Author(s):  
Michael D. Elftman ◽  
Mariam B. Gonzalez-Hernandez ◽  
Nobuhiko Kamada ◽  
Cheryl Perkins ◽  
Kenneth S. Henderson ◽  
...  

Dendritic cells (DCs) are permissive to murine norovirus (MNV) infection in vitro and in vivo. However, their roles during infection in vivo are not well defined. To determine the role of DCs during infection, conventional DCs were depleted from CD11c-DTR mice and infected with a persistent MNV strain. Viral titres in the intestine and secondary lymphoid organs were determined at early time points during infection, and anti-MNV antibody responses were analysed later during infection. Depletion of conventional DCs resulted in increased viral loads in intestinal tissues, impaired generation of antibody responses, and a failure of MNV to efficiently infect lymphoid tissues. These data suggest that DCs play multiple roles in MNV pathogenesis, in both innate immunity and the efficient generation of adaptive immune responses against MNV, as well as by promoting the dissemination of MNV to secondary lymphoid tissues. This is the first study to probe the roles of DCs in controlling and/or facilitating a norovirus infection in vivo and provides the basis for further studies aimed at defining mechanisms by which DCs control MNV replication and promote viral dissemination.


2009 ◽  
Vol 53 (12) ◽  
pp. 5163-5172 ◽  
Author(s):  
Vidya Dhote ◽  
Agata L. Starosta ◽  
Daniel N. Wilson ◽  
Kevin A. Reynolds

ABSTRACT Hygromycin A (HA) is an aminocyclitol antibiotic produced and excreted by Streptomyces hygroscopicus. Deletion of hyg26 from the hygromycin A biosynthetic gene cluster has previously been shown to result in a mutant that produces 5″-dihydrohygromycin A (DHHA). We report herein on the purification and characterization of Hyg26 expressed in E scherichia coli. The enzyme catalyzes an NAD(H)-dependent reversible interconversion of HA and DHHA, supporting the role of the reduced HA as the penultimate biosynthetic pathway intermediate and not a shunt product. The equilibrium for the Hyg26-catalyzed reaction heavily favors the DHHA intermediate. The high-titer production of the HA product by S. hygroscopicus must be dependent upon a subsequent energetically favorable enzyme-catalyzed process, such as the selective and efficient export of HA. hyg19 encodes a putative proton gradient-dependent transporter, and a mutant lacking this gene was observed to produce less HA and to produce the DHHA intermediate. The DHHA produced by either the Δhyg19 or the Δhyg26 mutant had slightly reduced activity against E. coli and reduced protein synthesis-inhibitory activity in vitro. The data indicate that Hyg26 and Hyg19 have evolved to produce and export the final potent HA product in a coordinated fashion.


2018 ◽  
Vol 40 (5-6) ◽  
pp. 617-626 ◽  
Author(s):  
Xiao Liang ◽  
Xuemei Liu ◽  
Fuxin Lu ◽  
Yunling Zhang ◽  
Xiangning Jiang ◽  
...  

Hypoxia-inducible factor 1α (HIF1α) is a key regulator of oxygen homeostasis, and its target genes mediate adaptive, protective, and pathological processes. The role of HIF1α in neuronal survival is controversial and the brain maturation stage is important in determining its function in brain ischemia or hypoxia-ischemia (HI). In this study, we used neuron-specific HIF1α knockout mice at postnatal day 9 (P9), and immature cortical neurons (days 7–8 in vitro) treated with the HIF1α inhibitor 2-methoxyestradiol (2ME2) or stabilizer dimethyloxalylglycine (DMOG), to examine the function of neuronal HIF1α in neonatal HI in vivo (Vannucci model) and in vitro (oxygen glucose deprivation, OGD). Inhibition of HIF1α with 2ME2 in primary neurons or deletion of neuronal HIF1α in P9 mice increased both necrotic and apoptotic cell death following HI, as evaluated by the protein levels of 145/150-kDa and 120-kDa spectrin breakdown products 24 h after HI. DMOG attenuated neuronal death right after OGD. Acute pharmacological manipulation of HIF1α synchronously regulated the expression of its targets, vascular endothelial growth factor (VEGF) and erythropoietin (Epo), in the same manner. The in vivo findings agree with our previous data using the same HIF1α-deficient mice at an earlier age. This study confirms the role of neuronal HIF1α signaling in the endogenous protective responses following HI in the developing brain.


2018 ◽  
Author(s):  
Cleber A. Trujillo ◽  
Richard Gao ◽  
Priscilla D. Negraes ◽  
Isaac A. Chaim ◽  
Alain Domissy ◽  
...  

SUMMARYStructural and transcriptional changes during early brain maturation follow fixed developmental programs defined by genetics. However, whether this is true for functional network activity remains unknown, primarily due to experimental inaccessibility of the initial stages of the living human brain. Here, we developed cortical organoids that spontaneously display periodic and regular oscillatory network events that are dependent on glutamatergic and GABAergic signaling. These nested oscillations exhibit cross-frequency coupling, proposed to coordinate neuronal computation and communication. As evidence of potential network maturation, oscillatory activity subsequently transitioned to more spatiotemporally irregular patterns, capturing features observed in preterm human electroencephalography (EEG). These results show that the development of structured network activity in the human neocortex may follow stable genetic programming, even in the absence of external or subcortical inputs. Our approach provides novel opportunities for investigating and manipulating the role of network activity in the developing human cortex.HIGHLIGHTSEarly development of human functional neural networks and oscillatory activity can be modeled in vitro.Cortical organoids exhibit phase-amplitude coupling between delta oscillation (2 Hz) and high-frequency activity (100-400 Hz) during network-synchronous events.Differential role of glutamate and GABA in initiating and maintaining oscillatory network activity.Developmental impairment of MECP2-KO cortical organoids impacts the emergence of oscillatory activity.Cortical organoid network electrophysiological signatures correlate with human preterm neonatal EEG features.eTOCBrain oscillations are a candidate mechanism for how neural populations are temporally organized to instantiate cognition and behavior. Cortical organoids initially exhibit periodic and highly regular nested oscillatory network events that eventually transition to more spatiotemporally complex activity, capturing features of late-stage preterm infant electroencephalography. Functional neural circuitry in cortical organoids exhibits emergence and development of oscillatory network dynamics similar to those found in the developing human brain.


2003 ◽  
Vol 89 (5) ◽  
pp. 2528-2537 ◽  
Author(s):  
Irwin H. Lee ◽  
John A. Assad

To examine the role of basal ganglia-cortical circuits in movement initiation, we trained monkeys to make the same arm movements in two ways—in immediate reaction to a randomly timed external cue (cued movements) and also following a variable delay without an explicit initiation signal (self-timed movements). The two movement types were interleaved and balanced in overall timing to allow a direct comparison of activity before and during the movement. Posterior putaminal neurons generally had phasic, movement-related discharges that were comparable for cued and self-timed movements. On cued movements, neuronal activity increased sharply following cue onset. However, for self-timed movements, there was a slow build-up in activity that preceded the phasic discharge. This slow build-up was time-locked to movement and restricted to a narrow time window hundreds of milliseconds before movement. The difference in premovement activity between cued and self-timed trials was present before the earliest cue-onset times and was not related to any differences in the overall time-to-move between the two types of trials. These features suggest that activity evolving in the basal ganglia-cortical circuitry may drive the initiation of movements by increasing until an activity threshold is exceeded. The activity may increase abruptly in response to an external cue or gradually when the timing of movements is determined by the animals themselves rather than an external cue. In this view, small changes in activity that occur in advance of the much larger perimovement neuronal activity may be an important determinant of when movement occurs. In support of this hypothesis, we found that even for cued movements, faster reaction times were associated with slightly higher levels of activity hundreds of milliseconds before movement.


2010 ◽  
Vol 31 (9) ◽  
pp. 394-401 ◽  
Author(s):  
Yuri Zilberter ◽  
Tanya Zilberter ◽  
Piotr Bregestovski

Author(s):  
Janet H. Woodward ◽  
D. E. Akin

Silicon (Si) is distributed throughout plant tissues, but its role in forages has not been clarified. Although Si has been suggested as an antiquality factor which limits the digestibility of structural carbohydrates, other research indicates that its presence in plants does not affect digestibility. We employed x-ray microanalysis to evaluate Si as an antiquality factor at specific sites of two cultivars of bermuda grass (Cynodon dactvlon (L.) Pers.). “Coastal” and “Tifton-78” were chosen for this study because previous work in our lab has shown that, although these two grasses are similar ultrastructurally, they differ in in vitro dry matter digestibility and in percent composition of Si.Two millimeter leaf sections of Tifton-7 8 (Tift-7 8) and Coastal (CBG) were incubated for 72 hr in 2.5% (w/v) cellulase in 0.05 M sodium acetate buffer, pH 5.0. For controls, sections were incubated in the sodium acetate buffer or were not treated.


Author(s):  
David B. Warheit ◽  
Lena Achinko ◽  
Mark A. Hartsky

There is a great need for the development of a rapid and reliable bioassay to evaluate the pulmonary toxicity of inhaled particles. A number of methods have been proposed, including lung clearance studies, bronchoalveolar lavage analysis, and in vitro cytotoxicity tests. These methods are often limited in scope inasmuch as they measure only one dimension of the pulmonary response to inhaled, instilled or incubated dusts. Accordingly, a comprehensive approach to lung toxicity studies has been developed.To validate the method, rats were exposed for 6 hours or 3 days to various concentrations of either aerosolized alpha quartz silica (Si) or carbonyl iron (CI) particles. Cells and fluids from groups of sham and dust-exposed animals were recovered by bronchoalveolar lavage (BAL). Alkaline phosphatase, LDH and protein values were measured in BAL fluids at several time points postexposure. Cells were counted and evaluated for viability, as well as differential and cytochemical analysis. In addition, pulmonary macrophages (PM) were cultured and studied for morphology, chemotaxis, and phagocytosis by scanning electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document