scholarly journals Single-nucleus RNA-seq identifies transcriptional heterogeneity in multinucleated skeletal myofibers

Author(s):  
Michael J Petrany ◽  
Casey O Swoboda ◽  
Chengyi Sun ◽  
Kashish Chetal ◽  
Xiaoting Chen ◽  
...  

AbstractWhile the majority of cells contain a single nucleus, cell types such as trophoblasts, osteoclasts, and skeletal myofibers require multinucleation. One advantage of multinucleation can be the assignment of distinct functions to different nuclei, but comprehensive interrogation of transcriptional heterogeneity within multinucleated tissues has been challenging due to the presence of a shared cytoplasm. Here, we utilized single-nucleus RNA-sequencing (snRNA-seq) to determine the extent of transcriptional diversity within multinucleated skeletal myofibers. Nuclei from mouse skeletal muscle were profiled across the lifespan, which revealed the emergence of distinct myonuclear populations in postnatal development and their reactivation in aging muscle. Our datasets also provided a platform for discovery of novel genes associated with rare specialized regions of the muscle cell, including markers of the myotendinous junction and functionally validated factors expressed at the neuromuscular junction. These findings reveal that myonuclei within syncytial muscle fibers possess distinct transcriptional profiles that regulate muscle biology.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael J. Petrany ◽  
Casey O. Swoboda ◽  
Chengyi Sun ◽  
Kashish Chetal ◽  
Xiaoting Chen ◽  
...  

AbstractWhile the majority of cells contain a single nucleus, cell types such as trophoblasts, osteoclasts, and skeletal myofibers require multinucleation. One advantage of multinucleation can be the assignment of distinct functions to different nuclei, but comprehensive interrogation of transcriptional heterogeneity within multinucleated tissues has been challenging due to the presence of a shared cytoplasm. Here, we utilized single-nucleus RNA-sequencing (snRNA-seq) to determine the extent of transcriptional diversity within multinucleated skeletal myofibers. Nuclei from mouse skeletal muscle were profiled across the lifespan, which revealed the presence of distinct myonuclear populations emerging in postnatal development as well as aging muscle. Our datasets also provided a platform for discovery of genes associated with rare specialized regions of the muscle cell, including markers of the myotendinous junction and functionally validated factors expressed at the neuromuscular junction. These findings reveal that myonuclei within syncytial muscle fibers possess distinct transcriptional profiles that regulate muscle biology.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthieu Dos Santos ◽  
Stéphanie Backer ◽  
Benjamin Saintpierre ◽  
Brigitte Izac ◽  
Muriel Andrieu ◽  
...  

Abstract Skeletal muscle fibers are large syncytia but it is currently unknown whether gene expression is coordinately regulated in their numerous nuclei. Here we show by snRNA-seq and snATAC-seq that slow, fast, myotendinous and neuromuscular junction myonuclei each have different transcriptional programs, associated with distinct chromatin states and combinations of transcription factors. In adult mice, identified myofiber types predominantly express either a slow or one of the three fast isoforms of Myosin heavy chain (MYH) proteins, while a small number of hybrid fibers can express more than one MYH. By snRNA-seq and FISH, we show that the majority of myonuclei within a myofiber are synchronized, coordinately expressing only one fast Myh isoform with a preferential panel of muscle-specific genes. Importantly, this coordination of expression occurs early during post-natal development and depends on innervation. These findings highlight a previously undefined mechanism of coordination of gene expression in a syncytium.


2021 ◽  
Author(s):  
Peter Orchard ◽  
Nandini Manickam ◽  
Christa Ventresca ◽  
Swarooparani Vadlamudi ◽  
Arushi Varshney ◽  
...  

Skeletal muscle accounts for the largest proportion of human body mass, on average, and is a key tissue in complex diseases and mobility. It is composed of several different cell and muscle fiber types. Here, we optimize single-nucleus ATAC-seq (snATAC-seq) to map skeletal muscle cell–specific chromatin accessibility landscapes in frozen human and rat samples, and single-nucleus RNA-seq (snRNA-seq) to map cell-specific transcriptomes in human. We additionally perform multi-omics profiling (gene expression and chromatin accessibility) on human and rat muscle samples. We capture type I and type II muscle fiber signatures, which are generally missed by existing single-cell RNA-seq methods. We perform cross-modality and cross-species integrative analyses on 33,862 nuclei and identify seven cell types ranging in abundance from 59.6% to 1.0% of all nuclei. We introduce a regression-based approach to infer cell types by comparing transcription start site–distal ATAC-seq peaks to reference enhancer maps and show consistency with RNA-based marker gene cell type assignments. We find heterogeneity in enrichment of genetic variants linked to complex phenotypes from the UK Biobank and diabetes genome-wide association studies in cell-specific ATAC-seq peaks, with the most striking enrichment patterns in muscle mesenchymal stem cells (∼3.5% of nuclei). Finally, we overlay these chromatin accessibility maps on GWAS data to nominate causal cell types, SNPs, transcription factor motifs, and target genes for type 2 diabetes signals. These chromatin accessibility profiles for human and rat skeletal muscle cell types are a useful resource for nominating causal GWAS SNPs and cell types.


2017 ◽  
Author(s):  
Trygve E. Bakken ◽  
Rebecca D. Hodge ◽  
Jeremy M. Miller ◽  
Zizhen Yao ◽  
Thuc N. Nguyen ◽  
...  

AbstractTranscriptional profiling of complex tissues by RNA-sequencing of single nuclei presents some advantages over whole cell analysis. It enables unbiased cellular coverage, lack of cell isolation-based transcriptional effects, and application to archived frozen specimens. Using a well-matched pair of single-nucleus RNA-seq (snRNA-seq) and single-cell RNA-seq (scRNA-seq) SMART-Seq v4 datasets from mouse visual cortex, we demonstrate that similarly high-resolution clustering of closely related neuronal types can be achieved with both methods if intronic sequences are included in nuclear RNA-seq analysis. More transcripts are detected in individual whole cells (∼11,000 genes) than nuclei (∼7,000 genes), but the majority of genes have similar detection across cells and nuclei. We estimate that the nuclear proportion of total cellular mRNA varies from 20% to over 50% for large and small pyramidal neurons, respectively. Together, these results illustrate the high information content of nuclear RNA for characterization of cellular diversity in brain tissues.


2020 ◽  
Author(s):  
Peter Orchard ◽  
Nandini Manickam ◽  
Arushi Varshney ◽  
Vivek Rai ◽  
Jeremy Kaplan ◽  
...  

AbstractBackgroundSkeletal muscle accounts for the largest proportion of human body mass, on average, and is a key tissue in complex diseases, mobility, and quality of life. It is composed of several different cell and muscle fiber types.ResultsHere, we optimize single-nucleus ATAC-seq (snATAC-seq) to map skeletal muscle cell-specific chromatin accessibility landscapes in frozen human and rat samples, and single-nucleus RNA-seq (snRNA-seq) to map cell-specific transcriptomes in human. We capture type I and type II muscle fiber signatures, which are generally missed by existing single-cell RNA-seq methods. We perform cross-modality and cross-species integrative analyses on 30,531 nuclei, representing 11 libraries, profiled in this study, and identify seven distinct cell types ranging in abundance from 63% (type II fibers) to 0.9% (muscle satellite cells) of all nuclei. We introduce a regression-based approach to infer cell types by comparing transcription start site-distal ATAC-seq peaks to reference enhancer maps and show consistency with RNA-based marker gene cell type assignments. We find heterogeneity in enrichment of genetic variants linked to complex phenotypes from the UK Biobank and diabetes genome wide association studies in cell-specific ATAC-seq peaks, with the most striking enrichment patterns in muscle mesenchymal stem cells (∼3% of nuclei). Finally, we overlay these chromatin accessibility maps on GWAS data to nominate causal cell types, SNPs, and transcription factor motifs for creatinine levels and type 2 diabetes signals.ConclusionsThese chromatin accessibility profiles for human and rat skeletal muscle cell types are a useful resource for investigating specific cell types and nominating causal GWAS SNPs and cell types.


2019 ◽  
Author(s):  
Marcus Alvarez ◽  
Elior Rahmani ◽  
Brandon Jew ◽  
Kristina M. Garske ◽  
Zong Miao ◽  
...  

AbstractSingle-nucleus RNA sequencing (snRNA-seq) measures gene expression in individual nuclei instead of cells, allowing for unbiased cell type characterization in solid tissues. Contrary to single-cell RNA seq (scRNA-seq), we observe that snRNA-seq is commonly subject to contamination by high amounts of extranuclear background RNA, which can lead to identification of spurious cell types in downstream clustering analyses if overlooked. We present a novel approach to remove debris-contaminated droplets in snRNA-seq experiments, called Debris Identification using Expectation Maximization (DIEM). Our likelihood-based approach models the gene expression distribution of debris and cell types, which are estimated using EM. We evaluated DIEM using three snRNA-seq data sets: 1) human differentiating preadipocytes in vitro, 2) fresh mouse brain tissue, and 3) human frozen adipose tissue (AT) from six individuals. All three data sets showed various degrees of extranuclear RNA contamination. We observed that existing methods fail to account for contaminated droplets and led to spurious cell types. When compared to filtering using these state of the art methods, DIEM better removed droplets containing high levels of extranuclear RNA and led to higher quality clusters. Although DIEM was designed for snRNA-seq data, we also successfully applied DIEM to single-cell data. To conclude, our novel method DIEM removes debris-contaminated droplets from single-cell-based data fast and effectively, leading to cleaner downstream analysis. Our code is freely available for use at https://github.com/marcalva/diem.


2021 ◽  
Author(s):  
Tallulah S Andrews ◽  
Jawairia Atif ◽  
Jeff C Liu ◽  
Catia T Perciani ◽  
Xue-Zhong Ma ◽  
...  

The critical functions of the human liver are coordinated through the interactions of hepatic parenchymal and non-parenchymal cells. Recent advances in single cell transcriptional approaches have enabled an examination of the human liver with unprecedented resolution. However, dissociation related cell perturbation can limit the ability to fully capture the human liver's parenchymal cell fraction, which limits the ability to comprehensively profile this organ. Here, we report the transcriptional landscape of 73,295 cells from the human liver using matched single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq). The addition of snRNA-seq enabled the characterization of interzonal hepatocytes at single-cell resolution, revealed the presence of rare subtypes of hepatic stellate cells previously only seen in disease, and detection of cholangiocyte progenitors that had only been observed during in vitro differentiation experiments. However, T and B lymphocytes and NK cells were only distinguishable using scRNA-seq, highlighting the importance of applying both technologies to obtain a complete map of tissue-resident cell-types. We validated the distinct spatial distribution of the hepatocyte, cholangiocyte and stellate cell populations by an independent spatial transcriptomics dataset and immunohistochemistry. Our study provides a systematic comparison of the transcriptomes captured by scRNA-seq and snRNA-seq and delivers a high-resolution map of the parenchymal cell populations in the healthy human liver.


2021 ◽  
Author(s):  
Zhengyu Ouyang ◽  
Nathanael Bourgeois ◽  
Eugenia Lyashenko ◽  
Paige Cundiff ◽  
Patrick F Cullen ◽  
...  

Induced pluripotent stem cell (iPSC) derived cell types are increasingly employed as in vitro model systems for drug discovery. For these studies to be meaningful, it is important to understand the reproducibility of the iPSC-derived cultures and their similarity to equivalent endogenous cell types. Single-cell and single-nucleus RNA sequencing (RNA-seq) are useful to gain such understanding, but they are expensive and time consuming, while bulk RNA-seq data can be generated quicker and at lower cost. In silico cell type decomposition is an efficient, inexpensive, and convenient alternative that can leverage bulk RNA-seq to derive more fine-grained information about these cultures. We developed CellMap, a computational tool that derives cell type profiles from publicly available single-cell and single-nucleus datasets to infer cell types in bulk RNA-seq data from iPSC-derived cell lines.


2020 ◽  
Author(s):  
Jixing Zhong ◽  
Gen Tang ◽  
Jiacheng Zhu ◽  
Xin Qiu ◽  
Weiying Wu ◽  
...  

AbstractParkinson’s disease (PD) is a neurodegenerative disease leading to the impairment of execution of movement. PD pathogenesis has been largely investigated, but either restricted in bulk level or at certain cell types, which failed to capture cellular heterogeneity and intrinsic interplays among distinct cell types. To overcome this, we applied single-nucleus RNA-seq and single cell ATAC-seq on cerebellum, midbrain and striatum of PD mouse and matched control. With 74,493 cells in total, we comprehensively depicted the dysfunctions under PD pathology covering proteostasis, neuroinflammation, calcium homeostasis and extracellular neurotransmitter homeostasis. Besides, by multi-omics approach, we identified putative biomarkers for early stage of PD, based on the relationships between transcriptomic and epigenetic profiles. We located certain cell types that primarily contribute to PD early pathology, narrowing the gap between genotypes and phenotypes. Taken together, our study provides a valuable resource to dissect the molecular mechanism of PD pathogenesis at single cell level, which could facilitate the development of novel methods regarding diagnosis, monitoring and practical therapies against PD at early stage.


2017 ◽  
Author(s):  
Luke Zappia ◽  
Belinda Phipson ◽  
Alicia Oshlack

AbstractAs single-cell RNA sequencing technologies have rapidly developed, so have analysis methods. Many methods have been tested, developed and validated using simulated datasets. Unfortunately, current simulations are often poorly documented, their similarity to real data is not demonstrated, or reproducible code is not available.Here we present the Splatter Bioconductor package for simple, reproducible and well-documented simulation of single-cell RNA-seq data. Splatter provides an interface to multiple simulation methods including Splat, our own simulation, based on a gamma-Poisson distribution. Splat can simulate single populations of cells, populations with multiple cell types or differentiation paths.


Sign in / Sign up

Export Citation Format

Share Document