scholarly journals Structural basis for active-site probes targeting Staphylococcus aureus serine hydrolase virulence factors

2020 ◽  
Author(s):  
Matthias Fellner ◽  
Christian S. Lentz ◽  
Sam A. Jamieson ◽  
Jodi L. Brewster ◽  
Linhai Chen ◽  
...  

SummaryStaphylococcus aureus is a major cause of infection in the community and in hospitals. Serine hydrolases play key roles in bacterial homeostasis, in particular biofilms. Activity-based profiling has previously identified a family of serine hydrolases, designated fluorophosphonate-binding hydrolases (Fphs), which contribute to virulence of S. aureus in the biofilm niche. Here we report structures of the putative tributyrin esterase FphF, alone and covalently bound by a substrate analog, and small molecule inhibitors that occupy the hydrophobic substrate-binding pocket. We show that FphF has promiscuous esterase activity. Building from this, we extended our analysis to the wider Fph protein family using homology modeling and docking tools. We predict that other Fph enzymes, including FphB which was linked directly to virulence, may be more specific than FphF. This study provides insight into Fph function and a template for designing new imaging agents, diagnostic probes, and inhibitors to treat S. aureus infections.

2009 ◽  
Vol 106 (37) ◽  
pp. 15616-15621 ◽  
Author(s):  
Masataka Umitsu ◽  
Hiroshi Nishimasu ◽  
Akiko Noma ◽  
Tsutomu Suzuki ◽  
Ryuichiro Ishitani ◽  
...  

S-adenosylmethionine (AdoMet) is a methyl donor used by a wide variety of methyltransferases, and it is also used as the source of an α-amino-α-carboxypropyl (“acp”) group by several enzymes. tRNA-yW synthesizing enzyme-2 (TYW2) is involved in the biogenesis of a hypermodified nucleotide, wybutosine (yW), and it catalyzes the transfer of the “acp” group from AdoMet to the C7 position of the imG-14 base, a yW precursor. This modified nucleoside yW is exclusively located at position 37 of eukaryotic tRNAPhe, and it ensures the anticodon-codon pairing on the ribosomal decoding site. Although this “acp” group has a significant role in preventing decoding frame shifts, the mechanism of the “acp” group transfer by TYW2 remains unresolved. Here we report the crystal structures and functional analyses of two archaeal homologs of TYW2 from Pyrococcus horikoshii and Methanococcus jannaschii. The in vitro mass spectrometric and radioisotope-labeling analyses confirmed that these archaeal TYW2 homologues have the same activity as yeast TYW2. The crystal structures verified that the archaeal TYW2 contains a canonical class-I methyltransferase (MTase) fold. However, their AdoMet-bound structures revealed distinctive AdoMet-binding modes, in which the “acp” group, instead of the methyl group, of AdoMet is directed to the substrate binding pocket. Our findings, which were confirmed by extensive mutagenesis studies, explain why TYW2 transfers the “acp” group, and not the methyl group, from AdoMet to the nucleobase.


MedChemComm ◽  
2017 ◽  
Vol 8 (5) ◽  
pp. 1121-1130 ◽  
Author(s):  
L. J. Y. M. Swier ◽  
L. Monjas ◽  
F. Reeßing ◽  
R. C. Oudshoorn ◽  
Aisyah Aisyah ◽  
...  

Exploring binding opportunities in the pocket of ThiT, a S-component for the transport of thiamine.


2006 ◽  
Vol 188 (11) ◽  
pp. 4051-4056 ◽  
Author(s):  
René M. de Jong ◽  
Kor H. Kalk ◽  
Lixia Tang ◽  
Dick B. Janssen ◽  
Bauke W. Dijkstra

ABSTRACT Haloalcohol dehalogenases are bacterial enzymes that cleave the carbon-halogen bond in short aliphatic vicinal haloalcohols, like 1-chloro-2,3-propanediol, some of which are recalcitrant environmental pollutants. They use a conserved Ser-Tyr-Arg catalytic triad to deprotonate the haloalcohol oxygen, which attacks the halogen-bearing carbon atom, producing an epoxide and a halide ion. Here, we present the X-ray structure of the haloalcohol dehalogenase HheAAD2 from Arthrobacter sp. strain AD2 at 2.0-Å resolution. Comparison with the previously reported structure of the 34% identical enantioselective haloalcohol dehalogenase HheC from Agrobacterium radiobacter AD1 shows that HheAAD2 has a similar quaternary and tertiary structure but a much more open substrate-binding pocket. Docking experiments reveal that HheAAD2 can bind both enantiomers of the haloalcohol substrate 1-p-nitrophenyl-2-chloroethanol in a productive way, which explains the low enantiopreference of HheAAD2. Other differences are found in the halide-binding site, where the side chain amino group of Asn182 is in a position to stabilize the halogen atom or halide ion in HheAAD2, in contrast to HheC, where a water molecule has taken over this role. These results broaden the insight into the structural determinants that govern reactivity and selectivity in the haloalcohol dehalogenase family.


2019 ◽  
Author(s):  
Li Zhang ◽  
Deqiang Yao ◽  
Fu Zhou ◽  
Qing Zhang ◽  
Ying Xia ◽  
...  

AbstractHuman glycerol channel AQP7 conducts glycerol release from adipocyte and entry into the cells in pancreatic islets, muscles and kidney tubule, and thus regulate glycerol metabolism in those tissues. Compared with other human aquaglyceroporins, AQP7 shows a less conserved “NPA” motif in the center cavity, and a pair of aromatic residues at Ar/R selectivity filter. To understand the structural basis for the glycerol conductance, we crystallized the human AQP7 and determined the structure at 3.7 Å. A substrate binding pocket was found near to the Ar/R filter and the bound glycerol molecule stabilized by R229. In vivo functional assay on human AQP7 as well as AQP3 and AQP10 demonstrated strong glycerol transportation activities at physiological condition. The human AQP7 structure reveals a fully closed conformation with its permeation pathway strictly confined by Ar/R filter at the exoplasmic side and the gate at the cytoplasmic side, and the dislocation of the residues at narrowest parts of glycerol pathway in AQP7 play a critical role in controlling the glycerol flux.


2017 ◽  
Vol 114 (38) ◽  
pp. 10089-10094 ◽  
Author(s):  
Lei Han ◽  
Yongping Zhu ◽  
Min Liu ◽  
Ye Zhou ◽  
Guangyuan Lu ◽  
...  

Sugar Will Eventually be Exported Transporters (SWEETs) are recently identified sugar transporters that can discriminate and transport di- or monosaccharides across a membrane following the concentration gradient. SWEETs play key roles in plant biological processes, such as pollen nutrition, nectar secretion, seed filling, and phloem loading. SWEET13 fromArabidopsis thaliana(AtSWEET13) is an important sucrose transporter in pollen development. Here, we report the 2.8-Å resolution crystal structure of AtSWEET13 in the inward-facing conformation with a substrate analog, 2′-deoxycytidine 5′-monophosphate, bound in the central cavity. In addition, based on the results of an in-cell transport activity assay and single-molecule Förster resonance energy transfer analysis, we suggest a mechanism for substrate selectivity based on the size of the substrate-binding pocket. Furthermore, AtSWEET13 appears to form a higher order structure presumably related to its function.


2003 ◽  
Vol 375 (2) ◽  
pp. 255-262 ◽  
Author(s):  
David KOMANDER ◽  
Gursant S. KULAR ◽  
Jennifer BAIN ◽  
Matthew ELLIOTT ◽  
Dario R. ALESSI ◽  
...  

PDK1 (3-phosphoinositide-dependent protein kinase-1) is a member of the AGC (cAMP-dependent, cGMP-dependent, protein kinase C) family of protein kinases, and has a key role in insulin and growth-factor signalling through phosphorylation and subsequent activation of a number of other AGC kinase family members, such as protein kinase B. The staurosporine derivative UCN-01 (7-hydroxystaurosporine) has been reported to be a potent inhibitor for PDK1, and is currently undergoing clinical trials for the treatment of cancer. Here, we report the crystal structures of staurosporine and UCN-01 in complex with the kinase domain of PDK1. We show that, although staurosporine and UCN-01 interact with the PDK1 active site in an overall similar manner, the UCN-01 7-hydroxy group, which is not present in staurosporine, generates direct and water-mediated hydrogen bonds with active-site residues. Inhibition data from UCN-01 tested against a panel of 29 different kinases show a different pattern of inhibition compared with staurosporine. We discuss how these differences in inhibition could be attributed to specific interactions with the additional 7-hydroxy group, as well as the size of the 7-hydroxy-group-binding pocket. This information could lead to opportunities for structure-based optimization of PDK1 inhibitors.


2010 ◽  
Vol 54 (10) ◽  
pp. 4343-4351 ◽  
Author(s):  
Jean-Denis Docquier ◽  
Manuela Benvenuti ◽  
Vito Calderone ◽  
Magdalena Stoczko ◽  
Nicola Menciassi ◽  
...  

ABSTRACT Metallo-β-lactamases (MBLs) are important enzymatic factors in resistance to β-lactam antibiotics that show important structural and functional heterogeneity. BJP-1 is a subclass B3 MBL determinant produced by Bradyrhizobium japonicum that exhibits interesting properties. BJP-1, like CAU-1 of Caulobacter vibrioides, overall poorly recognizes β-lactam substrates and shows an unusual substrate profile compared to other MBLs. In order to understand the structural basis of these properties, the crystal structure of BJP-1 was obtained at 1.4-Å resolution. This revealed significant differences in the conformation and locations of the active-site loops, determining a rather narrow active site and the presence of a unique N-terminal helix bearing Phe-31, whose side chain binds in the active site and represents an obstacle for β-lactam substrate binding. In order to probe the potential of sulfonamides (known to inhibit various zinc-dependent enzymes) to bind in the active sites of MBLs, the structure of BJP-1 in complex with 4-nitrobenzenesulfonamide was also obtained (at 1.33-Å resolution), thereby revealing the mode of interaction of these molecules in MBLs. Interestingly, sulfonamide binding resulted in the displacement of the side chain of Phe-31 from its hydrophobic binding pocket, where the benzene ring of the molecule is now found. These data further highlight the structural diversity shown by MBLs but also provide interesting insights in the structure-function relationships of these enzymes. More importantly, we provided the first structural observation of MBL interaction with sulfonamides, which might represent an interesting scaffold for the design of MBL inhibitors.


2016 ◽  
Vol 198 (10) ◽  
pp. 1499-1512 ◽  
Author(s):  
Sonali Dhindwal ◽  
Leticia Gomez-Gil ◽  
David B. Neau ◽  
Thi Thanh My Pham ◽  
Michel Sylvestre ◽  
...  

ABSTRACTBiphenyl dioxygenase, the first enzyme of the biphenyl catabolic pathway, is a major determinant of which polychlorinated biphenyl (PCB) congeners are metabolized by a given bacterial strain. Ongoing efforts aim to engineer BphAE, the oxygenase component of the enzyme, to efficiently transform a wider range of congeners. BphAEII9, a variant of BphAELB400in which a seven-residue segment,335TFNNIRI341, has been replaced by the corresponding segment of BphAEB356,333GINTIRT339, transforms a broader range of PCB congeners than does either BphAELB400or BphAEB356, including 2,6-dichlorobiphenyl, 3,3′-dichlorobiphenyl, 4,4′-dichlorobiphenyl, and 2,3,4′-trichlorobiphenyl. To understand the structural basis of the enhanced activity of BphAEII9, we have determined the three-dimensional structure of this variant in substrate-free and biphenyl-bound forms. Structural comparison with BphAELB400reveals a flexible active-site mouth and a relaxed substrate binding pocket in BphAEII9that allow it to bind different congeners and which could be responsible for the enzyme's altered specificity. Biochemical experiments revealed that BphAEII9transformed 2,3,4′-trichlorobiphenyl and 2,2′,5,5′-tetrachlorobiphenyl more efficiently than did BphAELB400and BphAEB356. BphAEII9also transformed the insecticide dichlorodiphenyltrichloroethane (DDT) more efficiently than did either parental enzyme (apparentkcat/Kmof 2.2 ± 0.5 mM−1s−1, versus 0.9 ± 0.5 mM−1s−1for BphAEB356). Studies of docking of the enzymes with these three substrates provide insight into the structural basis of the different substrate selectivities and regiospecificities of the enzymes.IMPORTANCEBiphenyl dioxygenase is the first enzyme of the biphenyl degradation pathway that is involved in the degradation of polychlorinated biphenyls. Attempts have been made to identify the residues that influence the enzyme activity for the range of substrates among various species. In this study, we have done a structural study of one variant of this enzyme that was produced by family shuffling of genes from two different species. Comparison of the structure of this variant with those of the parent enzymes provided an important insight into the molecular basis for the broader substrate preference of this enzyme. The structural and functional details gained in this study can be utilized to further engineer desired enzymatic activity, producing more potent enzymes.


2021 ◽  
Vol 118 (49) ◽  
pp. e2113573118
Author(s):  
Carlos F. Rodriguez ◽  
Paloma Escudero-Bravo ◽  
Lucía Díaz ◽  
Paola Bartoccioni ◽  
Carmen García-Martín ◽  
...  

Despite having similar structures, each member of the heteromeric amino acid transporter (HAT) family shows exquisite preference for the exchange of certain amino acids. Substrate specificity determines the physiological function of each HAT and their role in human diseases. However, HAT transport preference for some amino acids over others is not yet fully understood. Using cryo–electron microscopy of apo human LAT2/CD98hc and a multidisciplinary approach, we elucidate key molecular determinants governing neutral amino acid specificity in HATs. A few residues in the substrate-binding pocket determine substrate preference. Here, we describe mutations that interconvert the substrate profiles of LAT2/CD98hc, LAT1/CD98hc, and Asc1/CD98hc. In addition, a region far from the substrate-binding pocket critically influences the conformation of the substrate-binding site and substrate preference. This region accumulates mutations that alter substrate specificity and cause hearing loss and cataracts. Here, we uncover molecular mechanisms governing substrate specificity within the HAT family of neutral amino acid transporters and provide the structural bases for mutations in LAT2/CD98hc that alter substrate specificity and that are associated with several pathologies.


Sign in / Sign up

Export Citation Format

Share Document