scholarly journals Metabolic shift underlies recovery in reversible infantile respiratory chain deficiency

Author(s):  
Denisa Hathazi ◽  
Helen Griffin ◽  
Matthew J. Jennings ◽  
Michele Giunta ◽  
Christopher Powell ◽  
...  

AbstractReversible infantile respiratory chain deficiency (RIRCD) is a rare mitochondrial myopathy leading to severe metabolic disturbances in infants, which recover spontaneously after 6 months of age. RIRCD is associated with the homoplasmic m.14674T>C mitochondrial DNA mutation, however only ∼1/100 carriers develop the disease. We studied 27 affected and 15 unaffected individuals from 19 families and found additional heterozygous mutations in nuclear genes interacting with mt-tRNAGlu including EARS2 and TRMU in the majority of affected individuals, but not in healthy carriers of m.14674T>C, supporting a digenic inheritance. The spontaneous recovery in infants with digenic mutations is modulated by changes in amino acid availability in a multi-step process. First, the integrated stress-response associated with increased FGF21 and GDF15 expression enhances catabolism via β-oxidation and the TCA cycle increasing the availability of amino acids. In the second phase mitochondrial biogenesis increases via mTOR activation, leading to improved mitochondrial translation and recovery. Similar mechanisms may explain the variable penetrance and tissue specificity of other mtDNA mutations and highlight the potential role of amino acids in improving mitochondrial disease.

2021 ◽  
Author(s):  
Daniel Hipps ◽  
Philip Dobson ◽  
Charlotte Warren ◽  
David McDonald ◽  
Andrew Fuller ◽  
...  

Mitochondria contain their own genome which encodes 13 essential mitochondrial proteins and accumulates somatic variants at up to 10 times the rate of the nuclear genome. These mitochondrial genome variants lead to respiratory chain deficiency and cellular dysfunction. Work with the PolgAmut/PolgAmut mouse model, which has a high mitochondrial DNA mutation rate, showed enhanced levels of age related osteoporosis in affected mice along with respiratory chain deficiency in osteoblasts. To explore whether respiratory chain deficiency is also seen in human osteoblasts with age, we developed a protocol and analysis framework for imaging mass cytometry (IMC) in bone tissue sections to analyse osteoblasts in situ. We have demonstrated significant increases in complex I deficiency with age in human osteoblasts. This work is consistent with findings from the PolgAmut/PolgAmut mouse model and suggests that respiratory chain deficiency, as a consequence of the accumulation of age related mitochondrial DNA mutations, may have a significant role to play in the pathogenesis of human age related osteoporosis.


2013 ◽  
Vol 22 (22) ◽  
pp. 4602-4615 ◽  
Author(s):  
Veronika Boczonadi ◽  
Paul M. Smith ◽  
Angela Pyle ◽  
Aurora Gomez-Duran ◽  
Ulrike Schara ◽  
...  

Brain ◽  
2010 ◽  
Vol 134 (1) ◽  
pp. 183-195 ◽  
Author(s):  
John P. Kemp ◽  
Paul M. Smith ◽  
Angela Pyle ◽  
Vivienne C. M. Neeve ◽  
Helen A. L. Tuppen ◽  
...  

Author(s):  
Kamila B. Muchowska ◽  
Sreejith Jayasree VARMA ◽  
Joseph Moran

How core biological metabolism initiated and why it uses the intermediates, reactions and pathways that it does remains unclear. Life builds its molecules from CO<sub>2 </sub>and breaks them down to CO<sub>2 </sub>again through the intermediacy of just five metabolites that act as the hubs of biochemistry. Here, we describe a purely chemical reaction network promoted by Fe<sup>2+ </sup>in which aqueous pyruvate and glyoxylate, two products of abiotic CO<sub>2 </sub>reduction, build up nine of the eleven TCA cycle intermediates, including all five universal metabolic precursors. The intermediates simultaneously break down to CO<sub>2 </sub>in a life-like regime resembling biological anabolism and catabolism. Introduction of hydroxylamine and Fe<sup>0 </sup>produces four biological amino acids. The network significantly overlaps the TCA/rTCA and glyoxylate cycles and may represent a prebiotic precursor to these core metabolic pathways.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 248
Author(s):  
Chang Ha Park ◽  
Hyeon Ji Yeo ◽  
Ye Jin Kim ◽  
Bao Van Nguyen ◽  
Ye Eun Park ◽  
...  

This study aimed to elucidate the variations in primary and secondary metabolites during Lycorisradiata flower development using high performance liquid chromatography (HPLC) and gas chromatography time-of-flight mass spectrometry (GC-TOFMS). The result showed that seven carotenoids, seven phenolic acids, three anthocyanins, and galantamine were identified in the L. radiata flowers. Most secondary metabolite levels gradually decreased according to the flower developmental stages. A total of 51 metabolites, including amines, sugars, sugar intermediates, sugar alcohols, amino acids, organic acids, phenolic acids, and tricarboxylic acid (TCA) cycle intermediates, were identified and quantified using GC-TOFMS. Among the hydrophilic compounds, most amino acids increased during flower development; in contrast, TCA cycle intermediates and sugars decreased. In particular, glutamine, asparagine, glutamic acid, and aspartic acid, which represent the main inter- and intracellular nitrogen carriers, were positively correlated with the other amino acids and were negatively correlated with the TCA cycle intermediates. Furthermore, quantitation data of the 51 hydrophilic compounds were subjected to partial least-squares discriminant analyses (PLS-DA) to assess significant differences in the metabolites of L. radiata flowers from stages 1 to 4. Therefore, this study will serve as the foundation for a biochemical approach to understand both primary and secondary metabolism in L. radiata flower development.


Metabolites ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 66 ◽  
Author(s):  
Manu Shree ◽  
Shyam K. Masakapalli

The goal of this study is to map the metabolic pathways of poorly understood bacterial phytopathogen, Xanthomonas oryzae (Xoo) BXO43 fed with plant mimicking media XOM2 containing glutamate, methionine and either 40% [13C5] xylose or 40% [13C6] glucose. The metabolic networks mapped using the KEGG mapper and the mass isotopomer fragments of proteinogenic amino acids derived from GC-MS provided insights into the activities of Xoo central metabolic pathways. The average 13C in histidine, aspartate and other amino acids confirmed the activities of PPP, the TCA cycle and amino acid biosynthetic routes, respectively. The similar labelling patterns of amino acids (His, Ala, Ser, Val and Gly) from glucose and xylose feeding experiments suggests that PPP would be the main metabolic route in Xoo. Owing to the lack of annotated gene phosphoglucoisomerase in BXO43, the 13C incorporation in alanine could not be attributed to the competing pathways and hence warrants additional positional labelling experiments. The negligible presence of 13C incorporation in methionine brings into question its potential role in metabolism and pathogenicity. The extent of the average 13C labelling in several amino acids highlighted the contribution of pre-existing pools that need to be accounted for in 13C-flux analysis studies. This study provided the first qualitative insights into central carbon metabolic pathway activities in Xoo.


Author(s):  
Alberte A. Lundquist ◽  
Stense Farholt ◽  
Malene L. Børresen ◽  
Morten Dunø ◽  
Flemming Wibrand ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Dong Wang ◽  
Robert Hartman ◽  
Chao Han ◽  
Chao-ming Zhou ◽  
Brandon Couch ◽  
...  

Abstract Background Intervertebral disc degeneration contributes to low back pain. The avascular intervertebral disc consists of a central hypoxic nucleus pulpous (NP) surrounded by the more oxygenated annulus fibrosus (AF). Lactic acid, an abundant end-product of NP glycolysis, has long been viewed as a harmful waste that acidifies disc tissue and decreases cell viability and function. As lactic acid is readily converted into lactate in disc tissue, the objective of this study was to determine whether lactate could be used by AF cells as a carbon source rather than being removed from disc tissue as a waste byproduct. Methods Import and conversion of lactate to tricarboxylic acid (TCA) cycle intermediates and amino acids in rabbit AF cells were measured by heavy-isotope (13C-lactate) tracing experiments using mass spectrometry. Levels of protein expression of lactate converting enzymes, lactate importer and exporter in NP and AF tissues were quantified by Western blots. Effects of lactate on proteoglycan (35S-sulfate) and collagen (3H-proline) matrix protein synthesis and oxidative phosphorylation (Seahorse XFe96 Extracellular Flux Analyzer) in AF cells were assessed. Results Heavy-isotope tracing experiments revealed that AF cells imported and converted lactate into TCA cycle intermediates and amino acids using in vitro cell culture and in vivo models. Addition of exogenous lactate (4 mM) in culture media induced expression of the lactate importer MCT1 and increased oxygen consumption rate by 50%, mitochondrial ATP-linked respiration by 30%, and collagen synthesis by 50% in AF cell cultures grown under physiologic oxygen (2-5% O2) and glucose concentration (1-5 mM). AF tissue highly expresses MCT1, LDH-H, an enzyme that preferentially converts lactate to pyruvate, and PDH, an enzyme that converts pyruvate to acetyl-coA. In contrast, NP tissue highly expresses MCT4, a lactate exporter, and LDH-M, an enzyme that preferentially converts pyruvate to lactate. Conclusions These findings support disc lactate-dependent metabolic symbiosis in which lactate produced by the hypoxic, glycolytic NP cells is utilized by the more oxygenated AF cells via oxidative phosphorylation for energy and matrix production, thus shifting the current research paradigm of viewing disc lactate as a waste product to considering it as an important biofuel. These scientifically impactful results suggest novel therapeutic targets in disc metabolism and degeneration.


Sign in / Sign up

Export Citation Format

Share Document