scholarly journals The complete mitochondrial genome sequence of Oryctes rhinoceros (Coleoptera: Scarabaeidae) based on long-read nanopore sequencing

2020 ◽  
Author(s):  
Igor Filipović ◽  
James P. Hereward ◽  
Gordana Rašić ◽  
Gregor J. Devine ◽  
Michael J. Furlong ◽  
...  

AbstractThe coconut rhinoceros beetle (CRB, Oryctes rhinoceros) is a severe and invasive pest of coconut and other palms throughout Asia and the Pacific. The biocontrol agent, Oryctes rhinoceros nudivirus (OrNV), has successfully suppressed O. rhinoceros populations for decades but new CRB invasions started appearing after 2007. A single-SNP variant within the mitochondrial cox1 gene is used to distinguish the recently-invading CRB-G lineage from other haplotypes, but the lack of mitogenome sequence for this species hinders further development of a molecular toolset for biosecurity and management programmes against CRB. Here we report the complete circular sequence and annotation for CRB mitogenome, generated to support such efforts.Sequencing data were generated using long-read Nanopore technology from genomic DNA isolated from a CRB-G female. The mitochondrial genome was assembled with Flye v.2.5, using the short-read Illumina sequences to remove homopolymers with Pilon, and annotated with MITOS. Independently-generated transcriptome data were used to assess the O. rhinoceros mitogenome annotation and transcription. The aligned sequences of 13 protein-coding genes (PCGs) (with degenerate third codon position) from O. rhinoceros, 13 other Scarabaeidae taxa and two outgroup taxa were used for the phylogenetic reconstruction with the Maximum likelihood (ML) approach in IQ-TREE and Bayesian (BI) approach in MrBayes.The complete circular mitochondrial genome of O. rhinoceros is 20,898 bp-long, with a gene content canonical for insects (13 PCGs, 2 rRNA genes, and 22 tRNA genes), as well as one structural variation (rearrangement of trnQ and trnI) and a long control region (6,204 bp). Transcription was detected across all 37 genes, and interestingly, within three domains in the control region. ML and BI phylogenies had the same topology, correctly grouping O. rhinoceros with one other Dynastinae taxon, and recovering the previously reported relationship among lineages in the Scarabaeidae. In silico PCR-RFLP analysis recovered the correct fragment set that is diagnostic for the CRB-G haplogroup. These results validate the high-quality of the CRB mitogenome sequence and annotation.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10552
Author(s):  
Igor Filipović ◽  
James P. Hereward ◽  
Gordana Rašić ◽  
Gregor J. Devine ◽  
Michael J. Furlong ◽  
...  

Background The coconut rhinoceros beetle (CRB, Oryctes rhinoceros) is a severe and invasive pest of coconut and other palms throughout Asia and the Pacific. The biocontrol agent, Oryctes rhinoceros nudivirus (OrNV), has successfully suppressed O. rhinoceros populations for decades but new CRB invasions started appearing after 2007. A single-SNP variant within the mitochondrial cox1 gene is used to distinguish the recently-invading CRB-G lineage from other haplotypes, but the lack of mitogenome sequence for this species hinders further development of a molecular toolset for biosecurity and management programmes against CRB. Here we report the complete circular sequence and annotation for CRB mitogenome, generated to support such efforts. Methods Sequencing data were generated using long-read Nanopore technology from genomic DNA isolated from a CRB-G female. The mitogenome was assembled with Flye v.2.5, using the short-read Illumina sequences to remove homopolymers with Pilon, and annotated with MITOS. Independently-generated transcriptome data were used to assess the O. rhinoceros mitogenome annotation and transcription. The aligned sequences of 13 protein-coding genes (PCGs) (with degenerate third codon position) from O. rhinoceros, 13 other Scarabaeidae taxa and two outgroup taxa were used for the phylogenetic reconstruction with the Maximum likelihood (ML) approach in IQ-TREE and Bayesian (BI) approach in MrBayes. Results The complete circular mitogenome of O. rhinoceros is 20,898 bp in length, with a gene content canonical for insects (13 PCGs, two rRNA genes, and 22 tRNA genes), as well as one structural variation (rearrangement of trnQ and trnI) and a long control region (6,204 bp). Transcription was detected across all 37 genes, and interestingly, within three domains in the control region. ML and BI phylogenies had the same topology, correctly grouping O. rhinoceros with one other Dynastinae taxon, and recovering the previously reported relationship among lineages in the Scarabaeidae. In silico PCR-RFLP analysis recovered the correct fragment set that is diagnostic for the CRB-G haplogroup. These results validate the high-quality of the O. rhinoceros mitogenome sequence and annotation.


Zootaxa ◽  
2020 ◽  
Vol 4860 (3) ◽  
pp. 401-412
Author(s):  
ZHI-TENG CHEN

The complete mitochondrial genome (mitogenome) of Pteronarcys sachalina Klapálek was sequenced and compared with those of two other salmonflies for the first time. The mitogenome of P. sachalina was 16,180 bp in length, with an A+T content of 70.6%. The uniform set of 37 genes (13 PCGs, 22 tRNA genes and two rRNA genes) and a long control region (1431 bp) were all annotated. Most PCGs had standard ATN start codons and TAN stop codons. COX1 exhibited the highest evolutionary rate among the 13 PCGs of sequenced species of Pteronarcyidae. ND2 was truncated at the 3′ end when compared with congeners. Most tRNA genes had typical cloverleaf secondary structures, whereas the dihydrouridine (DHU) arm of trnS1 was reduced. Tandem repeats and stem-loop (SL) structures were predicted in the control region of P. sachalina. Conserved sequences were found in control regions of the three already sequenced salmonflies, P. sachalina, Pteronarcys princeps Banks, and Pteronarcella badia (Hagen). 


Author(s):  
Tianhong Wang ◽  
Zihao Wang ◽  
Ruwei Bai ◽  
Zhijun Yu ◽  
Jingze Liu

Haemaphysalis qinghaiensis is an endemic species and mainly inhabiting in the northwestern plateau of China, which can transmit many zoonotic pathogens and cause great harm to animals. In this study, the complete mitochondrial genome (mitogenome) of H. qinghaiensis was assembled through the Illumina HiSeq platform. The mitogenome was 14,533 bp in length, consisting of 13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes and 3 noncoding regions (NCRs). The bias towards a high A+T content with 77.65% in mitogenome of H. qinghaiensis. The rearrangement of mitochondrial genes in H. qinghaiensis was consistent with other hard ticks. The phylogenetic analysis based on the concatenation of 13 PCGs from 65 tick mitogenomes showed that the H. qinghaiensis was clustered into a well-supported clade within the Haemaphysalis genus. This is the first complete mitogenome sequence of H. qinghaiensis, which provides a useful reference for understanding of the taxonomic and genetics of ticks.


Zootaxa ◽  
2013 ◽  
Vol 3620 (2) ◽  
pp. 260-272 ◽  
Author(s):  
WEN SONG ◽  
HU LI ◽  
FAN SONG ◽  
LI LIU ◽  
PEI WANG ◽  
...  

The 16, 299 bp long mitochondrial genome (mitogenome) of a tessaratomid bug, Eusthenes cupreus (Westwood), is reported and analyzed. The mitogenome represents the first sequenced complete mitogenome of the heteropteran family Tessaratomidae. The mitogenome of E. cuopreus is a typical circular DNA molecule with a total AT content of 74.1%, and contains 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and a control region. The gene arrangement is identical with the most common type in insects. Most PCGs start with the typical ATN codon, except that the initiation codon for COI is TTG. All tRNAs possess the typical clover-leaf structure, except tRNASer (AGN), in which the dihydrouridine (DHU) arm forms a simple loop. Six domains with 45 helices and three domains with 27 helices are predicted in the secondary structures of rrnL and rrnS, respectively. The control region is located between rrnS and tRNAIle, including some short microsatellite repeat sequences. In addition, three different repetitive sequences are found in the control region and the tRNAIle-tRNAGln-tRNAMet-ND2 gene cluster. One of the unusual features of this mitogenome is the presence of one tRNAGln-like sequence in the control region. This extra tRNAGln-like sequence is 73 bp long, and the anticodon arm is identical to that of the regular tRNAGln.


2021 ◽  
Author(s):  
Gautam Kumar Deb ◽  
Razia Khatun ◽  
Shakh Mohammed Jahangir Hossain ◽  
Shamsur Rahaman ◽  
Md. Anamul Bahar Bhuiyan ◽  
...  

Abstract Background: Complete mitochondrial genome of Bos frontalis will aid in the investigation of evolutionary links between closely related species. Bos frontalis mitogenome contains 37 genes and a control region. We discover the first complete mitogenome of Bos frontalis found in Bangladesh which was obtained from whole-genome sequencing of Bos frontalis.Results: Bos frontalis mitogenome is 16,347 bp long, with an AT-based nucleotide composition (60.21%). It contains 37 genes, including 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and a control region (D-loop). This circular genome starts with ND6(negative strand) and ends at ND5(positive strand). Protein coding genes lost 24 bases and tRNA genes gained 27 bases compared to closely related species. Phylogenetic analysis of the mitochondrial genome of 26 closely related species from 8 congeneric species was conducted by the maximum likelihood method with 1000 bootstrap iteration.Conclusion: Our studied Bos frontalis mitochondrial genome has a similar gene arrangement compared with other Bos species. It has almost the same amount of AT and GC content, but notably the ND6 gene lacks AT skew and GC skew than that of the other two comparing species. PCG’s loss in size might be a continuous process of evolution. The mitochondrial genome is regarded as a critical tool for species identification and monitoring populations of conservation concern.


2018 ◽  
Vol 94 ◽  
Author(s):  
P. Zhang ◽  
R.K. Ran ◽  
A.Y. Abdullahi ◽  
X.L. Shi ◽  
Y. Huang ◽  
...  

AbstractDipetalonema gracile is a common parasite in squirrel monkeys (Saimiri sciureus), which can cause malnutrition and progressive wasting of the host, and lead to death in the case of massive infection. This study aimed to identify a suspected D. gracile worm from a dead squirrel monkey by means of molecular biology, and to amplify its complete mitochondrial genome by polymerase chain reaction (PCR) and sequence analysis. The results identified the worm as D. gracile, and the full length of its complete mitochondrial genome was 13,584 bp, which contained 22 tRNA genes, 12 protein-coding genes, two rRNA genes, one AT-rich region and one small non-coding region. The nucleotide composition included A (16.89%), G (20.19%), T (56.22%) and C (6.70%), among which A + T = 73.11%. The 12 protein-coding genes used TTG and ATT as start codons, and TAG and TAA as stop codons. Among the 22 tRNA genes, only trnS1AGN and trnS2UCN exhibited the TΨC-loop structure, while the other 20 tRNAs showed the TV-loop structure. The rrnL (986 bp) and rrnS (685 bp) genes were single-stranded and conserved in secondary structure. This study has enriched the mitochondrial gene database of Dipetalonema and laid a scientific basis for further study on classification, and genetic and evolutionary relationships of Dipetalonema nematodes.


2017 ◽  
Author(s):  
Gisele Lopes Nunes ◽  
Renato Renison Moreira Oliveira ◽  
Eder Soares Pires ◽  
Santelmo Vasconcelos ◽  
Thadeu Pietrobon ◽  
...  

AbstractWe report the complete mitochondrial genome sequence of Glomeridesmus spelaeus, the first sequenced genome of the order Gomeridesmida. The genome is 14,825 pb in length and encodes 37 mitochondrial (13 PCGs, 2 rRNA genes, 22 tRNA) genes and contains a typical AT-rich region. The base composition of the genome was A (40.1%), T (36.4%), C (15.8%), and G (7.6%), with an AT content of 76.5%. Our results indicated that Glomeridesmus spelaeus only distantly related to the other Diplopoda species with available mitochondrial genomes in the public databases. The publication of the mitogenome of G. spelaeus will contribute to the identification of troglobitic invertebrates, a very significant advance for the conservation of the troglofauna.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242541
Author(s):  
Lvpei Du ◽  
Shanya Cai ◽  
Jun Liu ◽  
Ruoyu Liu ◽  
Haibin Zhang

Phymorhynchus is a genus of deep-sea snails that are most distributed in hydrothermal vent or cold seep environments. In this study, we presented the complete mitochondrial genome of P. buccinoides, a cold seep snail from the South China Sea. It is the first mitochondrial genome of a cold seep member of the superfamily Conoidea. The mitochondrial genome is 15,764 bp in length, and contains 13 protein-coding genes (PCGs), 2 rRNA genes, and 22 tRNA genes. These genes are encoded on the positive strand, except for 8 tRNA genes that are encoded on the negative strand. The start codon ATG and 3 types of stop codons, TAA, TAG and the truncated termination codon T, are used in the 13 PCGs. All 13 PCGs in the 26 species of Conoidea share the same gene order, while several tRNA genes have been translocated. Phylogenetic analysis revealed that P. buccinoides clustered with Typhlosyrinx sp., Eubela sp., and Phymorhynchus sp., forming the Raphitomidae clade, with high support values. Positive selection analysis showed that a residue located in atp6 (18 S) was identified as the positively selected site with high posterior probabilities, suggesting potential adaption to the cold seep environment. Overall, our data will provide a useful resource on the evolutionary adaptation of cold seep snails for future studies.


Zootaxa ◽  
2020 ◽  
Vol 4747 (3) ◽  
pp. 547-561
Author(s):  
QING ZHAO ◽  
GERASIMOS CASSIS ◽  
LING ZHAO ◽  
YIFAN HE ◽  
HUFANG ZHANG ◽  
...  

Zicrona caerulea (Linnaeus, 1758) is a cosmopolitan stink bug species, which belongs to the predatory subfamily Asopinae. In this study, the complete mitochondrial genome of Zicrona caerulea from Shanxi, China was sequenced for the first time, using next generation sequencing. The mitogenome was found to be 15,479 bp in length. It contained 13 protein-coding genes, two rRNA genes, 22 tRNA genes and a typical control region. This research revealed an overall A+T content of 77.14%. All tRNA genes had a clover-leaf structure except for trnS1, which lacks a dihydrouridine (DHU) arm; and for trnV, the DHU arm forms a simple loop. The lengths of rrnS and rrnL were 797 bp and 1,285 bp, respectively. Because of a shortage in tandem repeats, the A+T-rich region was 644 bp in length. Phylogenetic relationships based on these mitogenomes, using Bayesian inference and Maximum likelihood methods, showed that Zicrona caerulea belongs to Asopinae. The monophyly of families of the Pentatomoidea is supported, albeit limited taxon sampling. 


Zootaxa ◽  
2019 ◽  
Vol 4550 (4) ◽  
pp. 585
Author(s):  
GAËL ALEIX-MATA ◽  
FRANCISCO J. RUIZ-RUANO ◽  
JESÚS M. PÉREZ ◽  
MATHIEU SARASA ◽  
ANTONIO SÁNCHEZ

The Western Capercaillie (Tetrao urogallus) is a galliform bird of boreal climax forests from Scandinavia to eastern Siberia, with a fragmented population in southwestern Europe. We extracted the DNA of T. urogallus aquitanicus and obtained the complete mitochondrial genome (mitogenome) sequence by combining Illumina and Sanger sequencing sequence data. The mitochondrial genome of T. urogallus is 16,683 bp long and is very similar to that of Lyrurus tetrix (16,677 bp). The T. urogallus mitogenome contains the normal 13 protein-coding genes (PCGs), 22 transfer RNAs, 2 ribosomal RNAs, and the control region. The number, order, and orientation of the mitochondrial genes are the same as in L. tetrix and in other species of the same and other bird families. The three domains of the control region contained conserved sequences (ETAS; CSBs), boxes (F, E, D, C, B, BS box), the putative origin of replication of the H-strand (OH) and bidirectional promoters of translation (LSP/HSP). 


Sign in / Sign up

Export Citation Format

Share Document