scholarly journals Plk4 triggers autonomous de novo centriole biogenesis and maturation

2020 ◽  
Author(s):  
Catarina Nabais ◽  
Delphine Pessoa ◽  
Jorge de-Carvalho ◽  
Thomas van Zanten ◽  
Paulo Duarte ◽  
...  

AbstractCentrioles form centrosomes and cilia. In most proliferating cells, centrioles assemble through canonical duplication, which is spatially, temporally and numerically regulated by the cell cycle and the presence of mature centrioles. However, in certain cell-types, centrioles assemble de novo, yet by poorly understood mechanisms. Here, we established a controlled system to investigate de novo centriole biogenesis, using Drosophila melanogaster egg explants overexpressing Polo-like kinase 4 (Plk4), a trigger for centriole biogenesis. We show that at high Plk4 concentration, centrioles form de novo, mature and duplicate, independently of cell cycle progression and of the presence of other centrioles. Plk4 concentration determines the kinetics of centriole assembly. Moreover, our results suggest Plk4 operates in a switch-like manner to control the onset of de novo centriole formation, and that distinct biochemical kinetics regulate de novo and canonical biogenesis. Finally, we investigated which other factors modulate de novo centriole assembly and reveal that proteins of the pericentriolar matrix (PCM) promote biogenesis, likely by locally concentrating critical components.

2021 ◽  
Vol 220 (5) ◽  
Author(s):  
Catarina Nabais ◽  
Delphine Pessoa ◽  
Jorge de-Carvalho ◽  
Thomas van Zanten ◽  
Paulo Duarte ◽  
...  

Centrioles form centrosomes and cilia. In most proliferating cells, centrioles assemble through canonical duplication, which is spatially, temporally, and numerically regulated by the cell cycle and the presence of mature centrioles. However, in certain cell types, centrioles assemble de novo, yet by poorly understood mechanisms. Herein, we established a controlled system to investigate de novo centriole biogenesis, using Drosophila melanogaster egg explants overexpressing Polo-like kinase 4 (Plk4), a trigger for centriole biogenesis. We show that at a high Plk4 concentration, centrioles form de novo, mature, and duplicate, independently of cell cycle progression and of the presence of other centrioles. Plk4 concentration determines the temporal onset of centriole assembly. Moreover, our results suggest that distinct biochemical kinetics regulate de novo and canonical biogenesis. Finally, we investigated which other factors modulate de novo centriole assembly and found that proteins of the pericentriolar material (PCM), and in particular γ-tubulin, promote biogenesis, likely by locally concentrating critical components.


2005 ◽  
Vol 168 (5) ◽  
pp. 713-722 ◽  
Author(s):  
Sabrina La Terra ◽  
Christopher N. English ◽  
Polla Hergert ◽  
Bruce F. McEwen ◽  
Greenfield Sluder ◽  
...  

It has been reported that nontransformed mammalian cells become arrested during G1 in the absence of centrioles (Hinchcliffe, E., F. Miller, M. Cham, A. Khodjakov, and G. Sluder. 2001. Science. 291:1547–1550). Here, we show that removal of resident centrioles (by laser ablation or needle microsurgery) does not impede cell cycle progression in HeLa cells. HeLa cells born without centrosomes, later, assemble a variable number of centrioles de novo. Centriole assembly begins with the formation of small centrin aggregates that appear during the S phase. These, initially amorphous “precentrioles” become morphologically recognizable centrioles before mitosis. De novo–assembled centrioles mature (i.e., gain abilities to organize microtubules and replicate) in the next cell cycle. This maturation is not simply a time-dependent phenomenon, because de novo–formed centrioles do not mature if they are assembled in S phase–arrested cells. By selectively ablating only one centriole at a time, we find that the presence of a single centriole inhibits the assembly of additional centrioles, indicating that centrioles have an activity that suppresses the de novo pathway.


1996 ◽  
Vol 109 (1) ◽  
pp. 143-153 ◽  
Author(s):  
M. Starborg ◽  
K. Gell ◽  
E. Brundell ◽  
C. Hoog

We have isolated the murine homologue of the human Ki-67 antigen. The Ki-67 antigen is used as a marker to assess the proliferative capacity of tumour cells; however, its cellular function is not known. The murine Ki-67 cDNA sequence (TSG126) was found to contain 13 tandem repeats, making up more than half of the total protein size. A comparison of this repetitive sequence block to its human counterpart, which contains 16 consecutive repeat units, revealed several conserved sequence motifs, including one motif frequently observed in proteins interacting with DNA. An antiserum developed against the product of the TSG126 cDNA clone identified a protein with an apparent molecular mass of 360 kDa, mainly expressed in proliferating cells. The TSG126 protein begins to accumulate during the late G1 stage of the cell cycle and is first seen as numerous small granules evenly distributed throughout the nucleus. During the S and the G2 phases, larger foci that overlap with the nucleoli and the heterochromatic regions are formed. At the onset of mitosis the TSG126 protein undergoes a dramatic redistribution process and becomes associated with the surface of the condensed chromosomes. The relative absence of the TSG126 protein from G1 interphase cells strongly argues against a model where the association of the TSG126 protein with mitotic chromosomes merely reflects a mechanism for the symmetrical distribution of nucleolar proteins between daughter cells. Instead, the intracellular distribution of the TSG126 protein during the cell cycle suggests that it could have a chromatin-associated function in both interphase and mitotic cells. Microinjection of anti-TSG126 antibodies into proliferating Swiss-3T3 fibroblasts was found to delay cell cycle progression, indicating that the TSG126 protein has an essential nuclear function.


1997 ◽  
Vol 110 (19) ◽  
pp. 2345-2357 ◽  
Author(s):  
A. Battistoni ◽  
G. Guarguaglini ◽  
F. Degrassi ◽  
C. Pittoggi ◽  
A. Palena ◽  
...  

RanBP1 is a molecular partner of the Ran GTPase, which is implicated in the control of several processes, including DNA replication, mitotic entry and exit, cell cycle progression, nuclear structure, protein import and RNA export. While most genes encoding Ran-interacting partners are constitutively active, transcription of the RanBP1 mRNA is repressed in non proliferating cells, is activated at the G1/S transition in cycling cells and peaks during S phase. We report here that forced expression of the RanBP1 gene disrupts the orderly execution of the cell division cycle at several stages, causing inhibition of DNA replication, defective mitotic exit and failure of chromatin decondensation during the telophase-to-interphase transition in cells that achieve nuclear duplication and chromosome segregation. These results suggest that deregulated RanBP1 activity interferes with the Ran GTPase cycle and prevents the functioning of the Ran signalling system during the cell cycle.


2004 ◽  
Vol 15 (11) ◽  
pp. 5172-5186 ◽  
Author(s):  
Moe R. Mahjoub ◽  
M. Qasim Rasi ◽  
Lynne M. Quarmby

Polycystic kidney disease and related syndromes involve dysregulation of cell proliferation in conjunction with ciliary defects. The relationship between cilia and cell cycle is enigmatic, but it may involve regulation by the NIMA-family of kinases (Neks). We previously showed that the Nek Fa2p is important for ciliary function and cell cycle in Chlamydomonas. We now show that Fa2p localizes to an important regulatory site at the proximal end of cilia in both Chlamydomonas and a mouse kidney cell line. Fa2p also is associated with the proximal end of centrioles. Its localization is dynamic during the cell cycle, following a similar pattern in both cell types. The cell cycle function of Fa2p is kinase independent, whereas its ciliary function is kinase dependent. Mice with mutations in Nek1 or Nek8 have cystic kidneys; therefore, our discovery that a member of this phylogenetic group of Nek proteins is localized to the same sites in Chlamydomonas and kidney epithelial cells suggests that Neks play conserved roles in the coordination of cilia and cell cycle progression.


2019 ◽  
Vol 71 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Jinwoo Shin ◽  
Soonhyung Bae ◽  
Pil Joon Seo

We reconstituted the shoot regeneration process in callus with four phases and also scrutinized molecular components involved in phytohormonal interactions, ROS metabolism, cell cycle progression. and bioelectrical signaling during shoot regeneration.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 789-789
Author(s):  
Bart Nijmeijer ◽  
Karoly Szuhai ◽  
Henriette M Goselink ◽  
Marianke LJ Van Schie ◽  
Danielle De Jong ◽  
...  

Abstract B-lineage ALL, and chronic myeloid leukemia in B-lineage lymphoid blastic phase (CML-LBP), are characterized by deregulated proliferation of clonal B-precursor lymphoblasts. Cytogenetic aberrations, such as the t(9;22) translocation resulting in the bcr/abl fusion oncogene, play a critical role in leukemogenesis. However, full malignant transformation of B cell precursors likely requires secondary cytogenetic lesions. Recently, through array-based comparative genomic hybridization (array-CGH), recurrent submicroscopic cytogenetic deletions have been identified in the majority of ALL and CML-LBP. These deletions involve genes that control cell cycle progression such as BTG1 or RB1, or the p14ARF, p15INK4B or p16INK4A genes which are all encoded within the CDKN2A/B region. Alternative lesions involve genes that control lymphocyte development, such as IKAROS or PAX5. Little is known on the contribution of these deletions to the deregulated proliferation of ALL lymphoblasts, due to the limited availability of in vitro assays that allow manipulation of primary ALL blasts. We have established a serum- and growth factor-free in vitro system in which primary cells from 12 out of 34 ALL cases continuously proliferated for over 1 year. Leukemic cells from the other 22 cases survived in vitro for a significant period (>3 weeks) but did not divide significantly. Growth-factor independence was not restricted to a distinct cytogenetic subtype. Proliferating samples included 2 CML-LBP, 4 bcr/abl positive ALL, 1 etv6/abl positive ALL, 2 e2a-pbx1 positive ALL, 1 mll/enl positive ALL and 2 ALL cases with non-typical cytogenetics. To study whether growth factor independence correlated with submicroscopic lesions, we analyzed 10 in vitro proliferating and 10 non-proliferating samples on Agilent 44k CGH arrays. Seven of the 10 in vitro proliferating samples displayed a focal deletion (~500kb) of the CDKN2A/B locus at 9p21. Of these seven, three showed a focal (~150kb) deletion at the RB-1 locus on 13q14.2, two showed focal (~750kb) deletion at the BTG1 locus at 12q22, and one displayed focal deletions at both the RB1 and BTG1 loci. In the remaining three in vitro proliferating samples no submicroscopic deletions were detected. In the 10 non-proliferating samples, only 4 displayed deletions at the CDKN2A/B locus and no RB1 or BTG1 deletions were observed. Deletion of IKAROS was detected only in one of the proliferating samples that displayed RB1 deletion. No deletions at the PAX5 locus were detected. To confirm knock-out of the affected genes, and to study which of the three genes encoded by the CDKN2A/B locus were affected, we analyzed expression of full length transcripts in the primary blasts by RT-PCR. All cases that displayed deletions at the RB1 or BTG1 loci lacked RB1 or BTG1 transcripts, respectively, confirming homozygous deletion. The remaining cases expressed normal RB1 and BTG1 transcripts. Of the samples that showed deletions at the CDKN2A/B locus, two expressed p14, p15 and p16, suggesting hemizygous deletion, two only expressed p15 and p16, suggesting homozygous deletion of p14, and one only expressed p15, suggesting homozygous deletion of p14 as well as p16. Finally, two samples expressed none of the three transcripts, suggesting homozygous deletion of the entire CDKN2A/B region. Interestingly, homozygous deletion of RB1 and homozygous deletion of p15 or p16 were mutually exclusive, suggesting that either of these two events could suffice for deregulation of this pathway. After six months of continuous in vitro proliferation we again determined the status of BTG1, RB1, and the CDKN2A/B encoded genes in the 10 proliferating cell populations. No de novo RB1 or BTG1 deletions were observed. However, all 10 populations now lacked expression of one or more of the CDKN2A/B encoded genes. The majority of the new functional losses could be attributed to de novo deletions within the CDKN2A/B region, as determined by genomic PCR. In conclusion, our results provide evidence that deletion of genes that are involved in the control of cell cycle progression may decrease growth factor dependence of B lymphoblasts, and as such significantly contribute to leukemic transformation and/or clonal evolution.


Sign in / Sign up

Export Citation Format

Share Document