De novo shoot organogenesis during plant regeneration

2019 ◽  
Vol 71 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Jinwoo Shin ◽  
Soonhyung Bae ◽  
Pil Joon Seo

We reconstituted the shoot regeneration process in callus with four phases and also scrutinized molecular components involved in phytohormonal interactions, ROS metabolism, cell cycle progression. and bioelectrical signaling during shoot regeneration.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 789-789
Author(s):  
Bart Nijmeijer ◽  
Karoly Szuhai ◽  
Henriette M Goselink ◽  
Marianke LJ Van Schie ◽  
Danielle De Jong ◽  
...  

Abstract B-lineage ALL, and chronic myeloid leukemia in B-lineage lymphoid blastic phase (CML-LBP), are characterized by deregulated proliferation of clonal B-precursor lymphoblasts. Cytogenetic aberrations, such as the t(9;22) translocation resulting in the bcr/abl fusion oncogene, play a critical role in leukemogenesis. However, full malignant transformation of B cell precursors likely requires secondary cytogenetic lesions. Recently, through array-based comparative genomic hybridization (array-CGH), recurrent submicroscopic cytogenetic deletions have been identified in the majority of ALL and CML-LBP. These deletions involve genes that control cell cycle progression such as BTG1 or RB1, or the p14ARF, p15INK4B or p16INK4A genes which are all encoded within the CDKN2A/B region. Alternative lesions involve genes that control lymphocyte development, such as IKAROS or PAX5. Little is known on the contribution of these deletions to the deregulated proliferation of ALL lymphoblasts, due to the limited availability of in vitro assays that allow manipulation of primary ALL blasts. We have established a serum- and growth factor-free in vitro system in which primary cells from 12 out of 34 ALL cases continuously proliferated for over 1 year. Leukemic cells from the other 22 cases survived in vitro for a significant period (>3 weeks) but did not divide significantly. Growth-factor independence was not restricted to a distinct cytogenetic subtype. Proliferating samples included 2 CML-LBP, 4 bcr/abl positive ALL, 1 etv6/abl positive ALL, 2 e2a-pbx1 positive ALL, 1 mll/enl positive ALL and 2 ALL cases with non-typical cytogenetics. To study whether growth factor independence correlated with submicroscopic lesions, we analyzed 10 in vitro proliferating and 10 non-proliferating samples on Agilent 44k CGH arrays. Seven of the 10 in vitro proliferating samples displayed a focal deletion (~500kb) of the CDKN2A/B locus at 9p21. Of these seven, three showed a focal (~150kb) deletion at the RB-1 locus on 13q14.2, two showed focal (~750kb) deletion at the BTG1 locus at 12q22, and one displayed focal deletions at both the RB1 and BTG1 loci. In the remaining three in vitro proliferating samples no submicroscopic deletions were detected. In the 10 non-proliferating samples, only 4 displayed deletions at the CDKN2A/B locus and no RB1 or BTG1 deletions were observed. Deletion of IKAROS was detected only in one of the proliferating samples that displayed RB1 deletion. No deletions at the PAX5 locus were detected. To confirm knock-out of the affected genes, and to study which of the three genes encoded by the CDKN2A/B locus were affected, we analyzed expression of full length transcripts in the primary blasts by RT-PCR. All cases that displayed deletions at the RB1 or BTG1 loci lacked RB1 or BTG1 transcripts, respectively, confirming homozygous deletion. The remaining cases expressed normal RB1 and BTG1 transcripts. Of the samples that showed deletions at the CDKN2A/B locus, two expressed p14, p15 and p16, suggesting hemizygous deletion, two only expressed p15 and p16, suggesting homozygous deletion of p14, and one only expressed p15, suggesting homozygous deletion of p14 as well as p16. Finally, two samples expressed none of the three transcripts, suggesting homozygous deletion of the entire CDKN2A/B region. Interestingly, homozygous deletion of RB1 and homozygous deletion of p15 or p16 were mutually exclusive, suggesting that either of these two events could suffice for deregulation of this pathway. After six months of continuous in vitro proliferation we again determined the status of BTG1, RB1, and the CDKN2A/B encoded genes in the 10 proliferating cell populations. No de novo RB1 or BTG1 deletions were observed. However, all 10 populations now lacked expression of one or more of the CDKN2A/B encoded genes. The majority of the new functional losses could be attributed to de novo deletions within the CDKN2A/B region, as determined by genomic PCR. In conclusion, our results provide evidence that deletion of genes that are involved in the control of cell cycle progression may decrease growth factor dependence of B lymphoblasts, and as such significantly contribute to leukemic transformation and/or clonal evolution.


2021 ◽  
Vol 220 (5) ◽  
Author(s):  
Catarina Nabais ◽  
Delphine Pessoa ◽  
Jorge de-Carvalho ◽  
Thomas van Zanten ◽  
Paulo Duarte ◽  
...  

Centrioles form centrosomes and cilia. In most proliferating cells, centrioles assemble through canonical duplication, which is spatially, temporally, and numerically regulated by the cell cycle and the presence of mature centrioles. However, in certain cell types, centrioles assemble de novo, yet by poorly understood mechanisms. Herein, we established a controlled system to investigate de novo centriole biogenesis, using Drosophila melanogaster egg explants overexpressing Polo-like kinase 4 (Plk4), a trigger for centriole biogenesis. We show that at a high Plk4 concentration, centrioles form de novo, mature, and duplicate, independently of cell cycle progression and of the presence of other centrioles. Plk4 concentration determines the temporal onset of centriole assembly. Moreover, our results suggest that distinct biochemical kinetics regulate de novo and canonical biogenesis. Finally, we investigated which other factors modulate de novo centriole assembly and found that proteins of the pericentriolar material (PCM), and in particular γ-tubulin, promote biogenesis, likely by locally concentrating critical components.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Ufuk Günesdogan ◽  
Herbert Jäckle ◽  
Alf Herzig

Eukaryotes package DNA into nucleosomes that contain a core of histone proteins. During DNA replication, nucleosomes are disrupted and re-assembled with newly synthesized histones and DNA. Despite much progress, it is still unclear why higher eukaryotes contain multiple core histone genes, how chromatin assembly is controlled, and how these processes are coordinated with cell cycle progression. We used a histone null mutation of Drosophila melanogaster to show that histone supply levels, provided by a defined number of transgenic histone genes, regulate the length of S phase during the cell cycle. Lack of de novo histone supply not only extends S phase, but also causes a cell cycle arrest during G2 phase, and thus prevents cells from entering mitosis. Our results suggest a novel cell cycle surveillance mechanism that monitors nucleosome assembly without involving the DNA repair pathways and exerts its effect via suppression of CDC25 phosphatase String expression.


2020 ◽  
Author(s):  
Catarina Nabais ◽  
Delphine Pessoa ◽  
Jorge de-Carvalho ◽  
Thomas van Zanten ◽  
Paulo Duarte ◽  
...  

AbstractCentrioles form centrosomes and cilia. In most proliferating cells, centrioles assemble through canonical duplication, which is spatially, temporally and numerically regulated by the cell cycle and the presence of mature centrioles. However, in certain cell-types, centrioles assemble de novo, yet by poorly understood mechanisms. Here, we established a controlled system to investigate de novo centriole biogenesis, using Drosophila melanogaster egg explants overexpressing Polo-like kinase 4 (Plk4), a trigger for centriole biogenesis. We show that at high Plk4 concentration, centrioles form de novo, mature and duplicate, independently of cell cycle progression and of the presence of other centrioles. Plk4 concentration determines the kinetics of centriole assembly. Moreover, our results suggest Plk4 operates in a switch-like manner to control the onset of de novo centriole formation, and that distinct biochemical kinetics regulate de novo and canonical biogenesis. Finally, we investigated which other factors modulate de novo centriole assembly and reveal that proteins of the pericentriolar matrix (PCM) promote biogenesis, likely by locally concentrating critical components.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1380
Author(s):  
Daniela Cervantes-Pérez ◽  
Angélica Ortega-García ◽  
Rigoberto Medina-Andrés ◽  
Ramón Alberto Batista-García ◽  
Verónica Lira-Ruan

Nitric oxide (NO) has been recognized as a major player in the regulation of plant physiology and development. NO regulates cell cycle progression and cell elongation in flowering plants and green algae, although the information about NO function in non-vascular plants is scarce. Here, we analyze the effect of exogenous NO on Physcomitrella patens protonema growth. We find that increasing concentrations of the NO donor sodium nitroprusside (SNP) inhibit protonema relative growth rate and cell length. To further comprehend the effect of NO on moss development, we analyze the effect of SNP 5 and 10 µM on protoplast regeneration and, furthermore, protonema formation compared with untreated plants (control). Isolated protoplasts were left to regenerate for 24 h before starting the SNP treatments that lasted five days. The results show that SNP restrains the protoplast regeneration process and the formation of new protonema cells. When SNP treatments started five days after protoplast isolation, a decrease in cell number per protonema filament was observed, indicating an inhibition of cell cycle progression. Our results show that in non-vascular plants, NO negatively regulates plant regeneration, cell cycle and cell elongation.


2005 ◽  
Vol 168 (5) ◽  
pp. 713-722 ◽  
Author(s):  
Sabrina La Terra ◽  
Christopher N. English ◽  
Polla Hergert ◽  
Bruce F. McEwen ◽  
Greenfield Sluder ◽  
...  

It has been reported that nontransformed mammalian cells become arrested during G1 in the absence of centrioles (Hinchcliffe, E., F. Miller, M. Cham, A. Khodjakov, and G. Sluder. 2001. Science. 291:1547–1550). Here, we show that removal of resident centrioles (by laser ablation or needle microsurgery) does not impede cell cycle progression in HeLa cells. HeLa cells born without centrosomes, later, assemble a variable number of centrioles de novo. Centriole assembly begins with the formation of small centrin aggregates that appear during the S phase. These, initially amorphous “precentrioles” become morphologically recognizable centrioles before mitosis. De novo–assembled centrioles mature (i.e., gain abilities to organize microtubules and replicate) in the next cell cycle. This maturation is not simply a time-dependent phenomenon, because de novo–formed centrioles do not mature if they are assembled in S phase–arrested cells. By selectively ablating only one centriole at a time, we find that the presence of a single centriole inhibits the assembly of additional centrioles, indicating that centrioles have an activity that suppresses the de novo pathway.


1999 ◽  
Vol 19 (9) ◽  
pp. 6041-6047 ◽  
Author(s):  
Steven O. Marx ◽  
Andrew R. Marks

ABSTRACT Proliferation and cell cycle progression in response to growth factors require de novo protein synthesis. It has been proposed that binding of the eukaryotic translation initiation factor 4E (eIF-4E) to the inhibitory protein 4BP-1 blocks translation by preventing access of eIF-4G to the 5′ cap of the mRNA. The signal for translation initiation is thought to involve phosphorylation of 4BP-1, which causes it to dissociate from eIF-4E and allows eIF-4G to localize to the 5′ cap. It has been suggested that the ability of the macrolide antibiotic rapamycin to inhibit 4BP-1 phosphorylation is responsible for the potent antiproliferative property of this drug. We now show that rapamycin-resistant cells exhibited normal proliferation despite dephosphorylation of 4BP-1 that allows it to bind to eIF-4E. Moreover, despite rapamycin-induced dephosphorylation of 4BP-1, eIF-4E–eIF-4G complexes (eIF-4F) were still detected. In contrast, amino acid withdrawal, which caused a similar degree of 4BP-1 dephosphorylation, resulted in dissociation of the eIF-4E–eIF-4G complex. Thus, 4BP-1 dephosphorylation is not equivalent to eIF-4E inactivation and does not explain the antiproliferative property of rapamycin.


2020 ◽  
Author(s):  
Mengjun Gu ◽  
Yi Liu ◽  
Man Cui ◽  
Huilan Wu ◽  
Hong-Qing Ling

AbstractRibonucleotide reductase (RNR), functioning in the de novo synthesis of dNTPs, is crucial for DNA replication and cell cycle progression. However, the knowledge about the RNR in plants is still limited. In this study, we isolated ylc1 (young leaf chlorosis 1) mutant, which exhibited many development defects such as dwarf stature, chlorotic young leaf, and smaller fruits. Map-based cloning, complementation, and knocking-out experiments confirmed that YLC1 encodes a large subunit of RNR (SlRNRL1), an enzyme involved in the de novo biosynthesis of dNTPs. Physiological and transcriptomic analyses indicate that SlRNRL1 plays a crucial role in the regulation of cell cycle, chloroplast biogenesis, and photosynthesis in tomato. In addition, we knocked out SlRNRL2 (a SlRNRL1 homolog) using CRISPR-Cas9 technology in the tomato genome, and found that SlRNRL2, possessing a redundant function with SlRNRL1, played a weak role in the formation of RNR complex due to its low expression intensity. Genetic analysis reveals that SlRNRL1 and SlRNRL2 are essential for tomato growth and development as the double mutant slrnrl1slrnrl2 is lethal. This also implies that the de novo synthesis of dNTPs is required for seed development in tomato. Overall, our results provide a new insight for understanding the SlRNRL1 and SlRNRL2 functions and the mechanism of de novo biosynthesis of dNTPs in plants.


Sign in / Sign up

Export Citation Format

Share Document