centriole assembly
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 18)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
pp. mbc.E21-06-0305
Author(s):  
Alexander J. Stemm-Wolf ◽  
Eileen T. O'Toole ◽  
Ryan M. Sheridan ◽  
Jacob T. Morgan ◽  
Chad G. Pearson

Control of centrosome assembly is critical for cell division, intracellular trafficking and cilia. Regulation of centrosome number occurs through the precise duplication of centrioles that reside in centrosomes. Here we explored transcriptional control of centriole assembly and find that the RNA splicing factor SON is specifically required for completing procentriole assembly. Whole genome mRNA sequencing identified genes whose splicing and expression are affected by the reduction of SON, with an enrichment in genes involved in the microtubule cytoskeleton, centrosome and centriolar satellites. SON is required for the proper splicing and expression of CEP131 which encodes a major centriolar satellite protein and is required to organize the trafficking and microtubule network around the centrosomes. This study highlights the importance of the distinct microtubule trafficking network that is intimately associated with nascent centrioles and is responsible for procentriole development and efficient ciliogenesis. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text]


2021 ◽  
Author(s):  
Sónia Gomes Pereira ◽  
Ana Laura Sousa ◽  
Catarina Nabais ◽  
Tiago Paixão ◽  
Alexander J. Holmes ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Georgios N. Hatzopoulos ◽  
Tim Kükenshöner ◽  
Niccolò Banterle ◽  
Tatiana Favez ◽  
Isabelle Flückiger ◽  
...  

AbstractCentrioles are evolutionarily conserved multi-protein organelles essential for forming cilia and centrosomes. Centriole biogenesis begins with self-assembly of SAS-6 proteins into 9-fold symmetrical ring polymers, which then stack into a cartwheel that scaffolds organelle formation. The importance of this architecture has been difficult to decipher notably because of the lack of precise tools to modulate the underlying assembly reaction. Here, we developed monobodies against Chlamydomonas reinhardtii SAS-6, characterizing three in detail with X-ray crystallography, atomic force microscopy and cryo-electron microscopy. This revealed distinct monobody-target interaction modes, as well as specific consequences on ring assembly and stacking. Of particular interest, monobody MBCRS6-15 induces a conformational change in CrSAS-6, resulting in the formation of a helix instead of a ring. Furthermore, we show that this alteration impairs centriole biogenesis in human cells. Overall, our findings identify monobodies as powerful molecular levers to alter the architecture of multi-protein complexes and tune centriole assembly.


2021 ◽  
Vol 220 (5) ◽  
Author(s):  
Catarina Nabais ◽  
Delphine Pessoa ◽  
Jorge de-Carvalho ◽  
Thomas van Zanten ◽  
Paulo Duarte ◽  
...  

Centrioles form centrosomes and cilia. In most proliferating cells, centrioles assemble through canonical duplication, which is spatially, temporally, and numerically regulated by the cell cycle and the presence of mature centrioles. However, in certain cell types, centrioles assemble de novo, yet by poorly understood mechanisms. Herein, we established a controlled system to investigate de novo centriole biogenesis, using Drosophila melanogaster egg explants overexpressing Polo-like kinase 4 (Plk4), a trigger for centriole biogenesis. We show that at a high Plk4 concentration, centrioles form de novo, mature, and duplicate, independently of cell cycle progression and of the presence of other centrioles. Plk4 concentration determines the temporal onset of centriole assembly. Moreover, our results suggest that distinct biochemical kinetics regulate de novo and canonical biogenesis. Finally, we investigated which other factors modulate de novo centriole assembly and found that proteins of the pericentriolar material (PCM), and in particular γ-tubulin, promote biogenesis, likely by locally concentrating critical components.


2021 ◽  
Author(s):  
Alexander J. Stemm-Wolf ◽  
Eileen T. O’Toole ◽  
Ryan M. Sheridan ◽  
Jacob T. Morgan ◽  
Chad G. Pearson

AbstractControl of centrosome assembly is critical for cell division, intracellular trafficking and cilia. Regulation of centrosome number occurs through the precise duplication of centrioles that reside in centrosomes. Here we explored transcriptional control of centriole assembly and find that the RNA splicing factor SON is specifically required for completing procentriole assembly. Whole genome mRNA sequencing identified genes whose splicing and expression are affected by the reduction of SON, with an enrichment in genes involved in the microtubule cytoskeleton, centrosome and centriolar satellites. SON is required for the proper splicing and expression of CEP131 which encodes a major centriolar satellite protein and is required to organize the trafficking and microtubule network around the centrosomes. This study highlights the importance of the distinct microtubule trafficking network that is intimately associated with nascent centrioles and is responsible for procentriole development.


2021 ◽  
Author(s):  
Sónia Gomes Pereira ◽  
Ana Laura Sousa ◽  
Catarina Nabais ◽  
Tiago Paixão ◽  
Alexander J. Holmes ◽  
...  

2020 ◽  
Author(s):  
Sónia Gomes Pereira ◽  
Ana Laura Sousa ◽  
Catarina Nabais ◽  
Tiago Paixão ◽  
Alexander. J. Holmes ◽  
...  

Abstract/SummaryCentrioles are structurally conserved organelles, composing both centrosomes and cilia. In animal cycling cells, centrioles often form through a highly characterized process termed canonical duplication. However, a large diversity of eukaryotes form centrioles de novo through uncharacterized pathways. This unexplored diversity is key to understanding centriole assembly mechanisms and how they evolved to assist specific cellular functions. Here, combining electron microscopy and tomography, we show that during spermatogenesis of the moss Physcomitrium patens, centrioles are born as a co-axially oriented centriole pair united by a cartwheel. We observe that microtubules emanate from those bicentrioles, which localize to the spindle poles during cell division. Thereafter, each bicentriole breaks apart, and the two resulting sister centrioles mature asymmetrically, elongating specific microtubule triplets and a naked cartwheel. Subsequently, two cilia are assembled which are capable of beating asynchronously. We further show that conserved cartwheel and centriole wall components, SAS6, BLD10 and POC1 are expressed during spermatogenesis and are required for this de novo biogenesis pathway. Our work supports a scenario where centriole biogenesis is more diverse than previously thought and that conserved molecular modules underlie diversification of this essential pathway.


2020 ◽  
Author(s):  
Gee In Jung ◽  
Kunsoo Rhee

ABSTRACTCancer cells frequently include supernumerary centrioles. Here, we generated TP53;PCNT;CEP215 triple knockout cell lines and observed precocious separation and amplification of the centrioles at M phase. Many of the triple KO cells maintained supernumerary centrioles throughout the cell cycle. The M-phase-assembled centrioles lack an ability to function as templates for centriole assembly during S phase. They also lack an ability to organize microtubules in interphase. However, we found that a fraction of them acquired an ability to organize microtubules during M phase. Our works provide an example how supernumerary centrioles behave in dividing cells.


2020 ◽  
Vol 295 (52) ◽  
pp. 17922-17934
Author(s):  
Julia M. C. Busch ◽  
Minos-Timotheos Matsoukas ◽  
Maria Musgaard ◽  
Georgios A. Spyroulias ◽  
Philip C. Biggin ◽  
...  

Centrioles are key eukaryotic organelles that are responsible for the formation of cilia and flagella, and for organizing the microtubule network and the mitotic spindle in animals. Centriole assembly requires oligomerization of the essential protein spindle assembly abnormal 6 (SAS-6), which forms a structural scaffold templating the organization of further organelle components. A dimerization interaction between SAS-6 N-terminal “head” domains was previously shown to be essential for protein oligomerization in vitro and for function in centriole assembly. Here, we developed a pharmacophore model allowing us to assemble a library of low-molecular-weight ligands predicted to bind the SAS-6 head domain and inhibit protein oligomerization. We demonstrate using NMR spectroscopy that a ligand from this family binds at the head domain dimerization site of algae, nematode, and human SAS-6 variants, but also that another ligand specifically recognizes human SAS-6. Atomistic molecular dynamics simulations starting from SAS-6 head domain crystallographic structures, including that of the human head domain which we now resolve, suggest that ligand specificity derives from favorable Van der Waals interactions with a hydrophobic cavity at the dimerization site.


Sign in / Sign up

Export Citation Format

Share Document