scholarly journals HUMAN BREAST TUMOUR CELLS VIABILITY EFFECT OF AFRICAN DIOSCOREA ROTUNDATA TUBER EXTRACTS IN MCF-7 AND MDA-MB231 CELL LINES

2020 ◽  
Author(s):  
Joy Ifunanya Odimegwu ◽  
Olukemi Abiodun Odukoya ◽  
Alejandro Español ◽  
Maria Elena Sales

ABSTRACTObjectiveWe aim to test the efficacy of edible Dioscorea species grown and consumed in Nigeria, Africa on two breast cancer cell lines; MCF-7 and MDA-MB231 derived from a luminal and a triple-negative breast cancer (TNBC) respectively and to confirm safety in non-tumour cells MCF-10A using a well established cytotoxic compound paclitaxel as a standard. Metastatic breast cancer is a prevalent cause of mortality in women around the world. Breast cancer therapies have greatly advanced in recent years, but many patients develop cancer re-occurrence and metastasis and subsequently yield to the disease because of chemoresistance.MethodsEthanolic extracts of Dioscorea rotundata boiled and raw (DiosB and DiosR) respectively were chemically analysed for the presence of diosgenin using HPLC and the cytotoxic activity of the extracts were tested on MCF-7, MDA-MB-231 and MCF-10A cells In vitro by MTT assay.ResultsDiosB and DiosR extracts showed a higher maximal effect on MCF-7 cells than on MDA-MB231 after 24 h and 48 h treatments (p<0.0001 and p<0.05 respectively). DiosR, if applied at a range between 50-70 g/ml, can be effective to reduce breast tumor cell viability without affecting non tumorigenic MCF-10A cells either at 24 h or at 48 h. DiosB showed an IC50 of 38.83μg/ml while DiosR showed an IC50 of 41.80μg/ml.ConclusionThese results show that ethanolic extracts of Dioscorea rotundata tubers could be used effectively to treat breast cancer tumors and this is in sync with its diosgenin content as other Dioscorea species applied for similar treatments in Asia and elsewhere.

2020 ◽  
Author(s):  
Joy Ifunanya Odimegwu ◽  
Olukemi Abiodun Odukoya ◽  
Alejandro Español ◽  
Maria Elena Sales

Abstract Background : Several Dioscorea species are used in Chinese medicine for tumours and Dioscorea species grown in Africa are yet to be tested to the best of knowledge for efficacy as cytotoxic agents. In Nigeria, the greatest producer of edible yams in the world, Dioscorea is the king of plants. Its tubers feeds millions of people and also function as ethnomedicine for diverse diseases. We aim to test the efficacy of edible Dioscorea species grown and consumed in Nigeria on two breast cancer cell lines; MCF-7 and MDA-MB231 derived from a luminal and a triple-negative breast cancer (TNBC) respectively and to confirm safety in non-tumour cells MCF-10A (normal breast cell lines) using a well established cytotoxic compound paclitaxel as a standard. Metastatic breast cancer is a prevalent cause of mortality in women around the world. Breast cancer therapies have greatly advanced in recent years, leading to the statement that cancer is not a death sentence but many patients develop cancer re-occurrence and metastasis and subsequently yield to the disease because of chemoresistance. Methods : Ethanolic extracts of Dioscorea rotundata boiled and raw (DiosB and DiosR) respectively were chemically analysed for the presence of diosgenin using HPLC and their cytotoxic activity was tested on MCF-7, MDA-MB-231 and MCF-10A cells I n vitro by MTT assay.Results : DiosB and DiosR extracts were more effective on MCF-7 than on MDA-MB231 cells showing a higher maximal effect on MCF-7 cells than on MDA-MB231 after 24 h and 48 h treatments (p<0.0001 and p<0.05 respectively). DiosR, if applied at a range between 50-70 g/ml, can be effective to reduce breast tumor cell viability without affecting non tumorigenic MCF-10A cells either at 24 h or at 48 h. African yams contain cytotoxic principles. DiosB showed an IC 50 of 38.83µg/ml while DiosR showed an IC 50 of 41.80µg/ml. Discussion : The results have shown that Dioscorea rotundata tubers could be used effectively to treat breast cancer tumors and this is in sync with its diosgenin content, a known cytotoxic compound and the use of other Dioscorea species for similar treatments in Asia etc. A major limitation will be in creating higher demand for the tuber which is consumed as a staple and at the moment affordable to all.Conclusion : There will be need to make consumers aware of the significant anticancer importance of D. rotundat a and a great need to increase its cultivation in order to make it sufficient as food and as medicine.


2018 ◽  
Vol 8 (3) ◽  
pp. 159 ◽  
Author(s):  
Meghan Fragis ◽  
Abdulmonem I. Murayyan ◽  
Suresh Neethirajan

Background: Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer deaths among Canadian women. Cancer management through changes in lifestyle, such as increased intake of foods rich in dietary flavonoids, have been shown to decrease the risk associated with breast, liver, colorectal, and upper-digestive cancers in epidemiologic studies. Onions are high in flavonoid content and one of the most common vegetables. Additionally, onions are used in most Canadian cuisines.Methods: We investigated the effect of five prominent Ontario grown onion (Stanley, Ruby Ring, LaSalle, Fortress, and Safrane) extracts on two subtypes of breast cancer cell lines: a triple negative breast cancer line MDA-MB-231 and an ER+ breast cancer line MCF-7.Results: These onion extracts elicited strong anti-proliferative, anti-migratory, and cytotoxic activities on both the cancer cell lines. Flavonoids present in these onion extracts induced apoptosis, cell cycle arrest in the G2/M phase, and a reduction in mitochondrial membrane potential at dose-dependent concentrations. Onion extracts were more effective against MDA-MB-231 compared to the MCF-7 cell line. Conclusion: In this study, we investigated the extracts synthesized from Ontario-grown onion varieties in inducing anti-migratory, cytostatic, and cytotoxic activities in two sub-types of human breast cancer cell lines. Anti-tumor activity of these extracts depends upon the varietal and can be formulated into nutraceuticals and functional foods for the wellbeing of cancer patients. Overall, the results suggest that onion extracts are a good source of flavonoids with anti-cancerous properties.Keywords: onion extracts; flavonoids; anti-proliferative; breast cancer; cytotoxic activity


Author(s):  
Stefan Dimov ◽  
Anelia Ts. Mavrova ◽  
Denitsa Yancheva ◽  
Biliana Nikolova ◽  
Iana Tsoneva

Aims: The purpose was the synthesis of some new thienopyrimidines derivative of 1,3-disubstituted benzimidazoles and the evaluation of their cytotoxicity towards MDA-MB-231 and MCF-7 cell lines as well 3T3 cells. Background: An overexpression or mutational activation of TK receptors EGFR and HER2/neu are characteristic for tumors. It has been found that some thieno[2,3-d]pyrimidines exhibit better inhibitory activity against epidermal growth factor receptor (EGFR/ErbB-2) tyrosine kinase in comparison to aminoquinazolines. Breast cancer activity towards MDAMB-231 and MCF-7 cell lines by inhibiting EGFR was revealed by a novel 2-arylbenzimidazole. This motivated the synthesis of new thienopyrimidines possessing benzimidazole fragment in order to evaluate their cytotoxicity to the above mentioned cell lines. Objective: The objectives were the design and synthesis of a novel series thieno[2,3-d]pyrimidines bearing biologically active moieties as 1,3-disubstituted-benzimidazole heterocycle structurally similar to diaryl ureas in order to evaluate their cytotoxicity against MDA-MB-231, MCF-7 breast cancer cell lines. Methods: N,N-disubstituted benzimidazole-2-one carbonitriles were synthesized by Aza-Michael addition and used as precursors to generate some of the new thieno[2,3-d]pyrimidines in acidic medium. The interaction of chloroethyl-2- thienopyrimidines and 2-amino-benzimidazole resp. benzimidazol-2-one nitriles under solid-liquid transfer catalysis conditions lead to obtaining of new thienopyrimidines. MTT assay for cells survival was performed in order to establish the cytotoxicity of the tested compounds. Fluorescence study was used to elucidate some aspect of mechanism. Results: The effect of nine of the synthesized compounds was investigated towards MDA-MB-231 and MCF-7 cells as well as to 3T3 cells. Thieno[2,3-d]pyirimidine-4-one 16 (IC50 – 0.058 μM) and 21 (IC50 – 0.029 μM) possess high cytotoxicity against MDA-MB-231 cells after 24h. The most toxic against breast cancer MCF-7 cells was compounds 21 (IC50 – 0.074 μM), revealing lower cytotoxicity towards mouse fibroblast 3T3 cells with IC50 – 0.20 μM. SAR analisys was performed. Fluorescence study of the treatment of MDA-MB cells with compound 21 was carried out in order to clarify some aspects of mechanism of action. Conclusion: The relationship between cytotoxicity of compounds 14 and 20 against MCF-7 and 3T3 cells can suggest a similar mechanism of action. The antitumor potential of the tested compounds proves the necessity for further investigation to estimate the exact inhibition pathway in the cellular processes. The fluorescence study of the treatment of MDA-MB cells with compound 21 showed a rapid process of apoptosis.


2000 ◽  
Vol 2 (S1) ◽  
Author(s):  
CJ Pogson ◽  
CMW Chan ◽  
L-A Martin ◽  
GPH Gui ◽  
M Dowsett

Author(s):  
Muhammad Luqman Nordin ◽  
Arifah Abdul Kadir ◽  
Zainul Amiruddin Zakaria ◽  
Rasedee Abdullah ◽  
Muhammad Nazrul Hakim Abdullah

Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4332
Author(s):  
Nurul Izzati Zulkifli ◽  
Musthahimah Muhamad ◽  
Nur Nadhirah Mohamad Zain ◽  
Wen-Nee Tan ◽  
Noorfatimah Yahaya ◽  
...  

A bottom-up approach for synthesizing silver nanoparticles (AgNPs-GA) phytomediated by Garcinia atroviridis leaf extract is described. Under optimized conditions, the AgNPs-GA were synthesized at a concentration of 0.1 M silver salt and 10% (w/v) leaf extract, 1:4 mixing ratio of reactants, pH 3, temperature 32 °C and 72 h reaction time. The AgNPs-GA were characterized by various analytical techniques and their size was determined to be 5–30 nm. FTIR spectroscopy indicates the role of phenolic functional groups in the reduction of silver ions into AgNPs-GA and in supporting their subsequent stability. The UV-Visible spectrum showed an absorption peak at 450 nm which reflects the surface plasmon resonance (SPR) of AgNPs-GA and further supports the stability of these biosynthesized nanoparticles. SEM, TEM and XRD diffractogram analyses indicate that AgNPs-GA were spherical and face-centered-cubic in shape. This study also describes the efficacy of biosynthesized AgNPs-GA as anti-proliferative agent against human breast cancer cell lines, MCF-7 and MCF-7/TAMR-1. Our findings indicate that AgNPs-GA possess significant anti-proliferative effects against both the MCF-7 and MCF-7/TAMR-1 cell lines, with inhibitory concentration at 50% (IC50 values) of 2.0 and 34.0 µg/mL, respectively, after 72 h of treatment. An induction of apoptosis was evidenced by flow cytometry using Annexin V-FITC and propidium iodide staining. Therefore, AgNPs-GA exhibited its anti-proliferative activity via apoptosis on MCF-7 and MCF-7/TAMR-1 breast cancer cells in vitro. Taken together, the leaf extract from Garcinia atroviridis was found to be highly capable of producing AgNPs-GA with favourable physicochemical and biological properties.


2020 ◽  
Author(s):  
Adriane Feijo Evangelista ◽  
Renato J Oliveira ◽  
Viviane A O Silva ◽  
Rene A D C Vieira ◽  
Rui M Reis ◽  
...  

Abstract Introduction: Breast cancer is the most frequently diagnosed malignancy among women. However, the role of microRNA expression in breast cancer progression is not fully understood. In this study we examined predictive interactions between differentially expressed miRNAs and mRNAs in breast cancer cell lines representative of the common molecular subtypes. Integrative bioinformatics analysis identified miR-193 and miR-210 as potential regulatory biomarkers of mRNA in breast cancer. Several recent studies have investigated these miRNAs in a broad range of tumors, but the mechanism of their involvement in cancer progression has not previously been investigated. Methods: The miRNA-mRNA interactions in breast cancer cell lines were identified by parallel expression analysis and miRNA target prediction programs. The expression profiles of mRNA and miRNAs from luminal (MCF-7, MCF-7/AZ and T47D), HER2 (BT20 and SK-BR3) and triple negative subtypes (Hs578T e MDA-MB-231) could be clearly separated by unsupervised analysis using HB4A cell line as a control. Breast cancer miRNA data from TCGA patients were grouped according to molecular subtypes and then used to validate these findings. Expression of miR-193 and miR-210 was investigated by miRNA transient silencing assays using the MCF7, BT20 and MDA-MB-231 cell lines. Functional studies included, xCELLigence system, ApoTox-Glo triplex, flow cytometry and transwell assays were performed to determine cell proliferation, cytotoxicity, apoptosis, migration and invasion, respectively. Results: The most evident effects were associated with cell proliferation after miR-210 silencing in triple negative subtype cell line MDA-MB-231. Using in silico prediction algorithms, TNFRSF10 was identified as one of the potential downstream targets for both miRNAs. The TNFRSF10C and TNFRSF10D mRNA expression inversely correlated with the expression levels of miR-193 and miR210 in breast cell lines and breast cancer patients, respectively. Other potential regulated genes whose expression also inversely correlated with both miRNAs were CCND1, a mediator on invasion and metastasis, and the tumor suppressor gene RUNX3. Conclusion: In summary, our findings identify miR-193 and miR-210 as potential regulatory miRNA in different molecular subtypes of breast cancer and suggest that miR-210 may have specific role in MDA-MB-231 proliferation. Our results highlight important new downstream regulated targets that may serve as promising therapeutic pathways for aggressive breast cancers.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5577 ◽  
Author(s):  
Mohadeseh Hasanpourghadi ◽  
Nazia Abdul Majid ◽  
Mohd Rais Mustafa

Combination Index (CI) analysis suggested that MBIC and doxorubicin synergistically inhibited up to 97% of cell proliferation in ER+/PR+MCF-7 and triple negative MDA-MB-231 breast cancer cell lines. Moreover, treatment of the breast cancer cells with the combined drugs resulted in lower IC50 values in contrast to the individual drug treatment. Small noncoding microRNAs (miRNA) may function as non-mutational gene regulators at post-transcriptional level of protein synthesis. In the present study, the effect of the combined treatment of MBIC and doxorubicin on the expression level of several miRNAs including miR-34a, miR-146a, miR-320a and miR-542 were evaluated in MCF-7 and MDA-MB-231 breast cancer cell lines. These miRNAs have the potential to alter the protein level of survivin, the anti-apoptotic protein and reduce the metastatic activity in human breast cancer cell lines by interfering with the nuclear accumulation of NF-κB. Our results demonstrated the several fold changes in expression of miRNAs, which is drug and cell line dependent. This finding demonstrated a functional synergistic network between miR-34a, miR-320a and miR-542 that are negatively involved in post-transcriptional regulation of survivin in MCF-7 cells. While in MDA-MB-231 cells, changes in expression level of miR-146a was correlated with inhibition of the nuclear translocation of NF-κB. The overall result suggested that alteration in protein level and location of survivin and NF-κB by miR-34a, miR-320a, miR-146a and miR-542, remarkably influenced the synergistic enhancement of combined MBIC and doxorubicin in treatment of aggressive and less aggressive human breast cancer cell lines.


Sign in / Sign up

Export Citation Format

Share Document