scholarly journals Synthetic Maturation of Multilineage Human Liver Organoids via Genetically Guided Engineering

Author(s):  
Jeremy J. Velazquez ◽  
Ryan LeGraw ◽  
Farzaneh Moghadam ◽  
Yuqi Tan ◽  
Jacquelyn Kilbourne ◽  
...  

SUMMARYPluripotent stem cell (PSC)-derived organoids are emerging as novel human-based microphysiological models but display immature phenotypes with limited subsets of endothelial or stromal cells. Here we demonstrate that in vitro manipulation of gene regulatory networks (GRNs) in PSC-derived liver organoids selected either through computational analysis or targeted tissue design can advance tissue maturation in vitro. Through an unbiased comparison with the genetic signature of mature livers, we identify downregulated GRNs in fetal liver organoids compared to adult livers. We demonstrate that overexpression of PROX1 and ATF5, together with targeted CRISPR-based transcriptional activation of endogenous CYP3A4, drives maturation in vitro. Single cell analyses reveal hepatobiliary-, endothelial-, and stellate-like cell populations. The engineered organoids demonstrate enhanced vasculogenesis, capture native liver characteristics (e.g. FXR signaling, CYP3A4 activity), and exhibit therapeutic potential in mice. Collectively, our approach provides a genetically guided framework for engineering developmentally advanced multilineage tissues from hiPSCs.HIGHLIGHTSIn vitro tissue maturation via genetically encoded molecular programsComputational analysis to identify maturation transcription factors in liver organoidsPromoting vascularization of organoids via genetically encoded molecular programsSingle cell analysis of parenchymal and non-parenchymal cellsModeling of native liver functions and in vivo therapeutic potentialGraphical Abstract

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Sorabh Sharma ◽  
Rajeev Taliyan

The worldwide prevalence of movement disorders is increasing day by day. Parkinson’s disease (PD) is the most common movement disorder. In general, the clinical manifestations of PD result from dysfunction of the basal ganglia. Although the exact underlying mechanisms leading to neural cell death in this disease remains unknown, the genetic causes are often established. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the neurological disease conditions. The acetylation and deacetylation of histone proteins are carried out by opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. In the recent past, studies with HDAC inhibitors result in beneficial effects in bothin vivoandin vitromodels of PD. Various clinical trials have also been initiated to investigate the possible therapeutic potential of HDAC inhibitors in patients suffering from PD. The possible mechanisms assigned for these neuroprotective actions of HDAC inhibitors involve transcriptional activation of neuronal survival genes and maintenance of histone acetylation homeostasis, both of which have been shown to be dysregulated in PD. In this review, the authors have discussed the putative role of HDAC inhibitors in PD and associated abnormalities and suggest new directions for future research in PD.


2020 ◽  
Author(s):  
Giuliano Giuseppe Stirparo ◽  
Agata Kurowski ◽  
Stanley Eugene Strawbridge ◽  
Hannah Stuart ◽  
Thorsten Edwin Boroviak ◽  
...  

AbstractOCT4 is a fundamental component of the molecular circuitry governing pluripotency in vivo and in vitro. To determine how OCT4 protects the pluripotent lineage from differentiation into trophoblast, we used single cell transcriptomics and quantitative immunofluorescence on blastocysts and established differentially expressed genes and pathways between control and OCT4 null cells. Activation of most pluripotency-associated transcription factors in the early mouse inner cell mass appears independent of OCT4, whereas JAK/STAT signalling requires OCT4, via activation of IL6ST. Single cell deconvolution, diffusion component and trajectory inference dissected the process of differentiation of OCT4 null cells by activating specific gene-network and transcription factors. Downregulation of glycolytic and oxidative metabolism was observed. CHIPseq analysis suggests OCT4 directly targets rate-limiting glycolytic enzymes. Concomitant with significant disruption of the STAT3 pathway, oxidative respiration is significantly diminished in OCT4 null cells. Upregulation of the lysosomal pathway detected in OCT4 null embryos is likely attributable to aberrant metabolism.Highlights and noveltyMajor pluripotency-associated transcription factors are activated in OCT4-deficient early mouse ICM cells, coincident with ectopic expression of trophectoderm markersJAK/STAT signalling is defective in OCT4 null embryosOCT4 promotes expression of KATS enzymes by means of glycolytic production of Acetyl CoA to secure chromatin accessibility for acquisition of epiblast identityOCT4 regulates the metabolic and biophysical processes required for establishment of embryonic pluripotency


2018 ◽  
Author(s):  
Steffen Rulands ◽  
Heather J Lee ◽  
Stephen J Clark ◽  
Christof Angermueller ◽  
Sébastien A Smallwood ◽  
...  

SummaryPluripotency is accompanied by the erasure of parental epigenetic memory with naïve pluripotent cells exhibiting global DNA hypomethylation both in vitro and in vivo. Exit from pluripotency and priming for differentiation into somatic lineages is associated with genome-wide de novo DNA methylation. We show that during this phase, coexpression of enzymes required for DNA methylation turnover, DNMT3s and TETs, promotes cell-to-cell variability in this epigenetic mark. Using a combination of single-cell sequencing and quantitative biophysical modelling, we show that this variability is associated with coherent, genome-scale, oscillations in DNA methylation with an amplitude dependent on CpG density. Analysis of parallel single-cell transcriptional and epigenetic profiling provides evidence for oscillatory dynamics both in vitro and in vivo. These observations provide fresh insights into the emergence of epigenetic heterogeneity during early embryo development, indicating that dynamic changes in DNA methylation might influence early cell fate decisions.HighlightsCo-expression of DNMT3s and TETs drive genome-scale oscillations of DNA methylationOscillation amplitude is greatest at a CpG density characteristic of enhancersCell synchronisation reveals oscillation period and link with primary transcriptsMultiomic single-cell profiling provides evidence for oscillatory dynamics in vivo


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2531-2531 ◽  
Author(s):  
Elvin Wagenblast ◽  
Olga I. Gan ◽  
Maria Azkanaz ◽  
Sabrina A. Smith ◽  
Joana Araújo ◽  
...  

Leukemia is the most common cancer in children. Sequencing data from identical twins suggests that the first genetic alterations in childhood leukemia occur in utero. Children with Down syndrome (Trisomy 21, T21) have an increased risk of childhood leukemia. In 30% of newborns with Down syndrome, a transient pre-leukemia disease occurs, which is characterized by a clonal proliferation of immature megakaryocytes carrying somatic mutations in the GATA1 transcription factor. These acquired GATA1 mutations lead to the expression of an N-terminal truncated protein (GATA1-Short). In 20% of the cases, acute megakaryoblastic leukemia (AMKL) evolves from the pre-leukemia by acquisition of additional genetic mutations in the transient leukemia clone, predominantly in genes of the cohesin complex. It is hypothesized that this represents a multi-step process of leukemogenesis with three distinct genetic events: T21, GATA1-Short and additional cohesin mutations. Yet, it remains unclear how an extra copy of chromosome 21 predisposes towards leukemia, the mechanisms of leukemic transformation and the interplay between each genetic component. Therefore, we wanted to establish a tractable human model system to investigate the initiation and evolution of transient leukemia and AMKL using CRISPR/Cas9 genome editing in primary human hematopoietic stem cells (HSCs). To model the initiation of Down syndrome associated pre-leukemia, we utilized both neonatal cord blood and fetal liver derived LT-HSCs and other progenitor populations to express either the short or long isoform of GATA1 (GATA1-Short or GATA1-Long). This was carried out using an improved methodology that permits the in vitro and in vivo functional interrogation of CRISPR/Cas9 edited human LT-HSCs at the single cell level (Wagenblast et al., bioRxiv 609040). Importantly, in this case, expression of either GATA1 isoform remained under the regulatory control of the endogenous promoter. Culture of single LT-HSC, short-term (ST-HSC) and myelo-erythroid progenitors (MEP) revealed a drastic shift towards megakaryocytic lineage output upon exclusive expression of GATA1-Short compared to control or GATA1-Long, regardless of the developmental source of the derived cells. To investigate the functional consequences of exclusive GATA1-Short expression in LT-HSCs in vivo, we performed near-clonal xenotransplantation assays in NSG and NSGW41 mice. Strikingly, GATA1-Short edited LT-HSCs injected mice displayed a higher percentage of human CD41+CD45- megakaryocytic lineage derived cells and a decrease in human GlyA+CD45- erythroid cells compared to control. Morphological analysis revealed more immature forms of erythroid cells and fewer enucleated erythrocytes in GATA1-Short edited LT-HSCs injected mice. In order to add an additional genetic determinant to our model, we utilized T21 fetal liver derived LT-HSCs. Un-manipulated T21 LT-HSCs and other progenitor populations showed a bias towards erythroid, myeloid and megakaryocytic lineages at the expense of lymphoid fates. In vitro, the combination of T21 and CRISPR/Cas9-mediated GATA1-Short in LT-HSCs led to an increase in megakaryocytic lineage output, while decreasing erythroid output. This phenotype was similar to what was observed in normal karyotype fetal liver derived LT-HSCs. However, near clonal transplantation of GATA1-Short edited T21 LT-HSCs in NSG mice generated exclusive CD33+ myeloid grafts with disproportionate high levels of CD41+CD45- megakaryocytic lineage derived cells compared to T21 control. In addition a distinct CD34+CD41+CD71+CD45+ population was present. Thus, this phenotype is reminiscent of Down Syndrome associated transient leukemia. In summary, by using an improved CRISPR/Cas9 single cell methodology we show how GATA1 regulates lineage fate in normal and T21 LT-HSCs and other progenitor populations. Importantly, we show for the first time a humanized mouse model of Down syndrome associated transient leukemia, which was induced from T21 human fetal liver derived LT-HSCs engineered to express GATA1-Short. Current studies focus on adding additional mutations of the cohesin complex to progress transient leukemia to AMKL. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Shelagh Boyle ◽  
Ilya M. Flyamer ◽  
Iain Williamson ◽  
Dipta Sengupta ◽  
Wendy A. Bickmore ◽  
...  

AbstractPolycomb group (PcG) proteins silence gene expression by chemically and physically modifying chromatin. A subset of PcG target loci are compacted and cluster in the nucleus to form observable bodies; a conformation which is thought to contribute to gene silencing. However, how these interactions influence gross nuclear organisation and their relationship with transcription remains poorly understood. Here we examine the role of Polycomb Repressive Complex 1 (PRC1) in shaping 3D genome organization in mouse embryonic stem cells (mESCs). Using a combination of imaging and Hi-C analyses we show that PRC1-mediated long-range interactions are independent of CTCF and can bridge sites at a megabase scale. Impairment of PRC1 enzymatic activity does not directly disrupt these interactions. We demonstrate that PcG targets coalesce in vivo, and that developmentally induced expression of one of the target loci disrupts this spatial arrangement. Finally, we show that transcriptional activation and the loss of PRC1-mediated interactions are seperable events. These findings provide important insights into the function of PRC1, whilst highlighting the complexity of this regulatory system.HighlightsLoss of RING1B substantially disrupts nuclear architecture.PRC1 mediated looping can occur at a Mb scale and is independent of CTCF.Polycomb mediated looping is driven by canonical PRC1 complexes.Multimeric PRC1-mediated interactions occur in vitro and in vivo.Disruption of PRC1-mediated looping is independent of gene activation.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yusuke Yanagi ◽  
Koichi Nakayama ◽  
Tomoaki Taguchi ◽  
Shin Enosawa ◽  
Tadashi Tamura ◽  
...  

Abstract Cell-based therapy has been proposed as an alternative to orthotopic liver transplantation. The novel transplantation of an in vitro-generated liver bud might have therapeutic potential. In vivo and ex vivo methods for growing a liver bud are essential for paving the way for the clinical translation of liver bud transplantation. We herein report a novel transplantation method for liver buds that are grown in vivo involving orthotopic transplantation on the transected parenchyma of the liver, which showed long engraftment and marked growth in comparison to heterotopic transplantation. Furthermore, this study demonstrates a method for rapidly fabricating scalable liver-like tissue by fusing hundreds of liver bud-like spheroids using a 3D bioprinter. Its system to fix the shape of the 3D tissue with the needle-array system enabled the fabrication of elaborate geometry and the immediate execution of culture circulation after 3D printing—thereby avoiding an ischemic environment ex vivo. The ex vivo-fabricated human liver-like tissue exhibited self-tissue organization ex vivo and engraftment on the liver of nude rats. These achievements conclusively show both in vivo and ex vivo methods for growing in vitro-generated liver buds. These methods provide a new approach for in vitro-generated liver organoids transplantation.


2009 ◽  
Vol 29 (15) ◽  
pp. 4103-4115 ◽  
Author(s):  
Hui Huang ◽  
Ming Yu ◽  
Thomas E. Akie ◽  
Tyler B. Moran ◽  
Andrew J. Woo ◽  
...  

ABSTRACT The transcription factor RUNX-1 plays a key role in megakaryocyte differentiation and is mutated in cases of myelodysplastic syndrome and leukemia. In this study, we purified RUNX-1-containing multiprotein complexes from phorbol ester-induced L8057 murine megakaryoblastic cells and identified the ets transcription factor FLI-1 as a novel in vivo-associated factor. The interaction occurs via direct protein-protein interactions and results in synergistic transcriptional activation of the c-mpl promoter. Interestingly, the interaction fails to occur in uninduced cells. Gel filtration chromatography confirms the differentiation-dependent binding and shows that it correlates with the assembly of a complex also containing the key megakaryocyte transcription factors GATA-1 and Friend of GATA-1 (FOG-1). Phosphorylation analysis of FLI-1 with uninduced versus induced L8057 cells suggests the loss of phosphorylation at serine 10 in the induced state. Substitution of Ser10 with the phosphorylation mimic aspartic acid selectively impairs RUNX-1 binding, abrogates transcriptional synergy with RUNX-1, and dominantly inhibits primary fetal liver megakaryocyte differentiation in vitro. Conversely, substitution with alanine, which blocks phosphorylation, augments differentiation of primary megakaryocytes. We propose that dephosphorylation of FLI-1 is a key event in the transcriptional regulation of megakaryocyte maturation. These findings have implications for other cell types where interactions between runx and ets family proteins occur.


2021 ◽  
Vol 118 (14) ◽  
pp. e2015748118
Author(s):  
Jun Xia ◽  
Zhixin Kang ◽  
Yuanyuan Xue ◽  
Yanyan Ding ◽  
Suwei Gao ◽  
...  

During vertebrate embryogenesis, fetal hematopoietic stem and progenitor cells (HSPCs) exhibit expansion and differentiation properties in a supportive hematopoietic niche. To profile the developmental landscape of fetal HSPCs and their local niche, here, using single-cell RNA-sequencing, we deciphered a dynamic atlas covering 28,777 cells and 9 major cell types (23 clusters) of zebrafish caudal hematopoietic tissue (CHT). We characterized four heterogeneous HSPCs with distinct lineage priming and metabolic gene signatures. Furthermore, we investigated the regulatory mechanism of CHT niche components for HSPC development, with a focus on the transcription factors and ligand–receptor networks involved in HSPC expansion. Importantly, we identified an endothelial cell-specific G protein–coupled receptor 182, followed by in vivo and in vitro functional validation of its evolutionally conserved role in supporting HSPC expansion in zebrafish and mice. Finally, comparison between zebrafish CHT and human fetal liver highlighted the conservation and divergence across evolution. These findings enhance our understanding of the regulatory mechanism underlying hematopoietic niche for HSPC expansion in vivo and provide insights into improving protocols for HSPC expansion in vitro.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bo Li ◽  
Min Lian ◽  
Yikang Li ◽  
Qiwei Qian ◽  
Jun Zhang ◽  
...  

Myeloid-derived suppressor cells (MDSCs) emerge as a promising candidate for the immunotherapy of autoimmune hepatitis (AIH). However, targets for modulating MDSC in AIH are still being searched. Liver X receptors (LXRs) are important nuclear receptors linking lipid metabolism and immune responses. Despite the extensive studies of LXR in myeloid compartment, its role in MDSCs is currently less understood. Herein, expression of LXRα was found to be upregulated in AIH patients and colocalized with hepatic MDSCs. In ConA-induced hepatitis, deletion of LXRα led to increased expansion of MDSCs in the liver and alleviated the hepatic injury. MDSCs in LXRα−/− mice exhibited enhanced proliferation and survival comparing with WT mice. T-cell proliferation assay and adoptive cell transfer experiment validated the potent immunoregulatory role of MDSCs in vitro and in vivo. Mechanistically, MDSCs from LXRα−/− mice possessed significantly lower expression of interferon regulatory factor 8 (IRF-8), a key negative regulator of MDSC differentiation. Transcriptional activation of IRF-8 by LXRα was further demonstratedConclusionWe reported that abrogation of LXRα facilitated the expansion of MDSCs via downregulating IRF-8, and thereby ameliorated hepatic immune injury profoundly. Our work highlights the therapeutic potential of targeting LXRα in AIH.


1964 ◽  
Vol 47 (3_Suppl) ◽  
pp. S28-S36
Author(s):  
Kailash N. Agarwal
Keyword(s):  

ABSTRACT Red cells were incubated in vitro with sulfhydryl inhibitors and Rhantibody with and without prior incubation with prednisolone-hemisuccinate. These erythrocytes were labelled with Cr51 and P32 and their disappearance in vivo after autotransfusion was measured. Prior incubation with prednisolone-hemisuccinate had no effect on the rate of red cell disappearance. The disappearance of the cells was shown to take place without appreciable intravascular destruction.


Sign in / Sign up

Export Citation Format

Share Document