scholarly journals VST Family Proteins are Regulators of Root System Architecture in Rice and Arabidopsis

2020 ◽  
Author(s):  
Yanlin Shao ◽  
Kevin R. Lehner ◽  
Hongzhu Zhou ◽  
Isaiah Taylor ◽  
Chuanzao Mao ◽  
...  

AbstractRoot System Architecture (RSA) is a key factor in the efficiency of nutrient capture and water uptake in plants. Understanding the genetic control of RSA will be useful in minimizing fertilizer and water usage in agricultural cropping systems. Using a hydroponic screen and a gel-based imaging system we identified a rice gene, OsVST1, which plays a key role in controlling RSA. This gene encodes a homolog of the Arabidopsis VAP-RELATED SUPPRESSORS OF TMM (VSTs), a class of proteins that promote signaling in stomata by mediating plasma membrane-endoplasmic reticulum contacts. OsVST1 mutants have shorter primary roots, decreased root meristem size, and a more compact root system architecture. We show that the Arabidopsis VST triple mutants have similar phenotypes, with reduced primary root growth and smaller root meristems. Expression of OsVST1 largely complements the short root length and reduced plant height in the Arabidopsis triple mutant, supporting conservation of function between rice and Arabidopsis VST proteins. In a field trial, mutations in OsVST1 do not adversely affect grain yield, suggesting that modulation of this gene could be used as a way to optimize RSA without an inherent yield penalty.

2020 ◽  
Vol 11 ◽  
Author(s):  
Waldiodio Seck ◽  
Davoud Torkamaneh ◽  
François Belzile

Increasing the understanding genetic basis of the variability in root system architecture (RSA) is essential to improve resource-use efficiency in agriculture systems and to develop climate-resilient crop cultivars. Roots being underground, their direct observation and detailed characterization are challenging. Here, were characterized twelve RSA-related traits in a panel of 137 early maturing soybean lines (Canadian soybean core collection) using rhizoboxes and two-dimensional imaging. Significant phenotypic variation (P < 0.001) was observed among these lines for different RSA-related traits. This panel was genotyped with 2.18 million genome-wide single-nucleotide polymorphisms (SNPs) using a combination of genotyping-by-sequencing and whole-genome sequencing. A total of 10 quantitative trait locus (QTL) regions were detected for root total length and primary root diameter through a comprehensive genome-wide association study. These QTL regions explained from 15 to 25% of the phenotypic variation and contained two putative candidate genes with homology to genes previously reported to play a role in RSA in other species. These genes can serve to accelerate future efforts aimed to dissect genetic architecture of RSA and breed more resilient varieties.


Author(s):  
Marek Šírl ◽  
Tereza Šnajdrová ◽  
Dolores Gutiérrez-Alanís ◽  
Joseph G. Dubrovsky ◽  
Jean Phillipe Vielle-Calzada ◽  
...  

The AT-HOOK MOTIF NUCLEAR LOCALIZED PROTEIN (AHL) gene family encodes embryophyte-specific nuclear proteins with DNA binding activity. They modulate gene expression and affect various developmental processes in plants. We identify AHL18 (At3G60870) as a developmental modulator of root system architecture and growth. AHL18 regulates the length of the proliferation domain and number of dividing cells in the root apical meristem and thereby, cell production. Both primary root growth and lateral root development respond according to AHL18 transcription level. The ahl18 knock-out plants show reduced root systems due to a shorter primary root and a lower number of lateral roots. This change results from a higher number of arrested and non-developing lateral root primordia (LRP) rather than from decreased initiation. Overexpression of AHL18 results in a more extensive root system, longer primary roots, and increased density of lateral root initiation events. Formation of lateral roots is affected during the initiation of LRP and later development. AHL18 regulate root apical meristem activity, lateral root initiation and emergence, which is in accord with localization of its expression.


2020 ◽  
Vol 8 (4) ◽  
pp. 471 ◽  
Author(s):  
Thanh Nguyen Chu ◽  
Le Van Bui ◽  
Minh Thi Thanh Hoang

The objectives of this study were to evaluate the plant growth promoting effects on Arabidopsis by Pseudomonas sp. strains associated with rhizosphere of crop plants grown in Mekong Delta, Vietnam. Out of all the screened isolates, Pseudomonas PS01 isolated from maize rhizosphere showed the most prominent plant growth promoting effects on Arabidopsis and maize (Zea mays). We also found that PS01 altered root system architecture (RSA). The full genome of PS01 was resolved using high-throughput sequencing. Phylogenetic analysis identified PS01 as a member of the Pseudomonas putida subclade, which is closely related to Pseudomonas taiwanensis.. PS01 genome size is 5.3 Mb, assembled in 71 scaffolds comprising of 4820 putative coding sequence. PS01 encodes genes for the indole-3-acetic acid (IAA), acetoin and 2,3-butanediol biosynthesis pathways. PS01 promoted the growth of Arabidopsis and altered the root system architecture by inhibiting primary root elongation and promoting lateral root and root hair formation. By employing gene expression analysis, genetic screening and pharmacological approaches, we suggested that the plant-growth promoting effects of PS01 and the alteration of RSA might be independent of bacterial auxin and could be caused by a combination of different diffusible compounds and volatile organic compounds (VOCs). Taken together, our results suggest that PS01 is a potential candidate to be used as bio-fertilizer agent for enhancing plant growth.


2016 ◽  
Vol 10 (1) ◽  
pp. 25-28
Author(s):  
Ghasemali Nazemi ◽  
Silvio Salvi

Root system architecture (RSA) traits are characterized by constitutive genetic inheritance components which may enable to predict the root phenotypes based on genetic information. The research presented in this study aimed at the identification of traits and genes that underlie root system architecture (RSA) in a population of 176 recombinant inbred lines (RILs) derived from the cross between two durum wheat cvs. Meridiana and Claudio, in order to eventually contribute to the genetic improvement of this species. The following seedling-stage RSA traits were: primary root length, seminal root length, total root length, diameter of primary and seminal roots. Results of ANOVA showed a significant difference among durum wheat cultivars for all traits and the largest heritability was observed for total root length (30.7%). In total, 14 novel QTLs for RSA traits were identified, and both parents contributed favorable alleles to the population.International Journal of Life Sciences 10 (1) : 2016; 25-28


2020 ◽  
Vol 28 (1) ◽  
pp. 1-12
Author(s):  
Songyang Li ◽  
Wenqi Yu ◽  
Xiaodong Liu ◽  
Miao Wang

AbstractThe root system architecture (RSA) displays complex morphological characteristics because of diverse root growth behaviors. Recent studies have revealed that swarming behavior among roots is particularly important for RSA to adapt to environmental stimuli. However, few models are proposed to simulate RSA based on swarming behavior of roots. To analyze plasticity of RSA affected by swarming behavior, we propose viewing it as a swarm of single roots. A swarming behavior model is proposed by considering repulsion, alignment, and preference of individual single roots. Then, the swarming behavior model is integrated into a simple and generic RSA model (called ArchiSimple). Lastly, characteristics of RSA affected by swarming behavior model and non-swarming behavior model are compared and analyzed under three different virtual soil sets. The characteristics of RSA (such as primary root length, lateral root length, lateral roots, and resource uptake) are significantly promoted by swarming behavior. Root system distributions can also be greatly affected by swarming behavior. These results show that root foraging and exploration in soil can be regarded as collective behavior of individual single root.


Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 633 ◽  
Author(s):  
Muhammad Asim ◽  
Zia Ullah ◽  
Fangzheng Xu ◽  
Lulu An ◽  
Oluwaseun Olayemi Aluko ◽  
...  

Root system architecture (RSA) is required for the acquisition of water and mineral nutrients from the soil. One of the essential nutrients, nitrate (NO3−), is sensed and transported by nitrate transporters NRT1.1 and NRT2.1 in the plants. Nitrate transporter 1.1 (NRT1.1) is a dual-affinity nitrate transporter phosphorylated at the T101 residue by calcineurin B-like interacting protein kinase (CIPKs); it also regulates the expression of other key nitrate assimilatory genes. The differential phosphorylation (phosphorylation and dephosphorylation) strategies and underlying Ca2+ signaling mechanism of NRT1.1 stimulate lateral root growth by activating the auxin transport activity and Ca2+-ANR1 signaling at the plasma membrane and the endosomes, respectively. NO3− additionally functions as a signal molecule that forms a signaling system, which consists of a vast array of transcription factors that control root system architecture that either stimulate or inhibit lateral and primary root development in response to localized and high nitrate (NO3−), respectively. This review elucidates the so-far identified nitrate transporters, nitrate sensing, signal transduction, and the key roles of nitrate transporters and its downstream transcriptional regulatory network in the primary and lateral root development in Arabidopsis thaliana under stress conditions.


2019 ◽  
Author(s):  
Thibaut Bontpart ◽  
Cristobal Concha ◽  
Valerio Giuffrida ◽  
Ingrid Robertson ◽  
Kassahun Admkie ◽  
...  

AbstractThe analysis of root system growth, root phenotyping, is important to inform efforts to enhance plant resource acquisition from soils. However, root phenotyping remains challenging due to soil opacity and requires systems that optimize root visibility and image acquisition. Previously reported systems require costly and bespoke materials not available in most countries, where breeders need tools to select varieties best adapted to local soils and field conditions. Here, we present an affordable soil-based growth container (rhizobox) and imaging system to phenotype root development in greenhouses or shelters. All components of the system are made from commodity components, locally available worldwide to facilitate the adoption of this affordable technology in low-income countries. The rhizobox is large enough (~6000 cm2 visible soil) to not restrict vertical root system growth for at least seven weeks after sowing, yet light enough (~21 kg) to be routinely moved manually. Support structures and an imaging station, with five cameras covering the whole soil surface, complement the rhizoboxes. Images are acquired via the Phenotiki sensor interface, collected, stitched and analysed. Root system architecture (RSA) parameters are quantified without intervention. RSA of a dicot (chickpea, Cicer arietinum L.) and a monocot (barley, Hordeum vulgare L.) species, which exhibit contrasting root systems, were analysed. The affordable system is relevant for efforts in Ethiopia and elsewhere to enhance yields and climate resilience of chickpea and other crops for improved food security.Significance StatementAn affordable system to characterize root system architecture of soil-grown plants was developed. Using commodity components, this will enable local efforts world-wide to breed for enhanced root systems.


2020 ◽  
Vol 21 (5) ◽  
pp. 1886 ◽  
Author(s):  
Marek Širl ◽  
Tereza Šnajdrová ◽  
Dolores Gutiérrez-Alanís ◽  
Joseph G. Dubrovsky ◽  
Jean Phillipe Vielle-Calzada ◽  
...  

The At-Hook Motif Nuclear Localized Protein (AHL) gene family encodes embryophyte-specific nuclear proteins with DNA binding activity. They modulate gene expression and affect various developmental processes in plants. We identify AHL18 (At3G60870) as a developmental modulator of root system architecture and growth. AHL18 is involved in regulation of the length of the proliferation domain and number of dividing cells in the root apical meristem and thereby, cell production. Both primary root growth and lateral root development respond according to AHL18 transcription level. The ahl18 knock-out plants show reduced root systems due to a shorter primary root and a lower number of lateral roots. This change results from a higher number of arrested and non-developing lateral root primordia (LRP) rather than from a decreased LRP initiation. The over-expression of AHL18 results in a more extensive root system, longer primary roots, and increased density of lateral root initiation events. AHL18 is thus involved in the formation of lateral roots at both LRP initiation and their later development. We conclude that AHL18 participates in modulation of root system architecture through regulation of root apical meristem activity, lateral root initiation and emergence; these correspond well with expression pattern of AHL18.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ofelia Andrea Valdés-Rodríguez ◽  
Odilón Sánchez-Sánchez ◽  
Arturo Pérez-Vázquez ◽  
Joshua S. Caplan ◽  
Frédéric Danjon

Unlike most biofuel species,Jatropha curcashas promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of youngJ. curcasplants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was14±5% (mean ± standard deviation). AlthoughJ. curcasdeveloped more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.


Sign in / Sign up

Export Citation Format

Share Document