scholarly journals Slc26a9P2ACre, a new CRE driver to regulate gene expression in the otic placode lineage and other FGFR2b-dependent epithelia

2020 ◽  
Author(s):  
Lisa D. Urness ◽  
Xiaofen Wang ◽  
Chaoying Li ◽  
Rolen M. Quadros ◽  
Donald W. Harms ◽  
...  

AbstractPan-otic CRE drivers enable gene regulation throughout the otic placode lineage, comprising the inner ear epithelium and neurons. However, intersection of extra-otic gene-of-interest expression with the CRE lineage can compromise viability and impede auditory analyses. Furthermore, extant pan-otic CREs recombine in auditory and vestibular brain nuclei, making it difficult to ascribe resulting phenotypes solely to the inner ear. We previously identified Slc26a9 as an otic placode-specific target of FGFR2b ligands, FGF3 and FGF10. We show here that Slc26a9 is otic-specific through E10.5, but not required for hearing. We targeted P2ACre to the Slc26a9 stop codon, generating Slc26a9P2ACre mice, and observed CRE activity throughout the otic epithelium and neurons, with little activity evident in the brain. Notably, recombination was detected in many FGFR2b ligand-dependent epithelia. We generated Fgf10 and Fgf8 conditional mutants, and activated an FGFR2b ligand trap from E17.5-P3. In contrast to analogous mice generated with other pan-otic CREs, these were viable. Auditory thresholds were elevated in mutants, and correlated with cochlear epithelial cell losses. Thus, Slc26a9P2ACre provides a useful complement to existing pan-otic CRE drivers, particularly for postnatal analyses.Summary statementWe describe a new pan-otic CRE driver, Slc26a9P2ACre, with little activity in the brain or middle ear, and demonstrate its utility by manipulating FGF signaling and assessing hearing loss.

2010 ◽  
Vol 32 (5) ◽  
pp. 18-20
Author(s):  
Mary G. Goll

Proper regulation of gene expression is essential for the development and survival of every organ ism. Epigenetic modifications provide a way for cells to regulate gene expression and to propagate expression states heritably through cell division. Given the brain's complexity, it is not surprising that epigenetic regulation is essential for both normal development and maintenance of homoeostasis of this organ. New data suggest that the role of epigenetic regulation in the brain may extend much further, influencing both the ways neurons organize their networks in response to new experiences and the resultant behaviours. Such studies highlight the relevance of epigenetic regulation for neu rodevelopmental and neuropsychiatric disease.


Development ◽  
2020 ◽  
Vol 147 (13) ◽  
pp. dev191015
Author(s):  
Lisa D. Urness ◽  
Xiaofen Wang ◽  
Chaoying Li ◽  
Rolen M. Quadros ◽  
Donald W. Harms ◽  
...  

Author(s):  
Catarina Serra-Almeida ◽  
Cláudia Saraiva ◽  
Marta Esteves ◽  
Raquel Ferreira ◽  
Tiago Santos ◽  
...  

C-terminal binding proteins (CtBPs) are transcriptional modulators that can regulate gene expression through the recruitment of a corepressor complex composed of chromatin-modifying enzymes and transcriptional factors. In the brain, CtBPs have been described as regulators of cell proliferation, differentiation, and survival. Nevertheless, the role of CtBPs on postnatal neural stem cells (NSCs) fate is not known yet. Herein, we evaluate the expression and functions of CtBPs in postnatal NSCs from the subventricular zone (SVZ). We found that CtBPs were expressed in immature/progenitor cells, neurons and glial cells in the SVZ niche. Using the CtBPs modulator 4-methylthio 2-oxobutyric acid (MTOB), our results showed that 1 mM of MTOB induced cell death, while 5, 25, and 50 μM increased the number of proliferating neuroblasts, mature neurons, and oligodendrocytes. Interestingly, it also increased the dendritic complexity of immature neurons. Altogether, our results highlight CtBPs putative application for brain regenerative applications.


1992 ◽  
Vol 66 (1) ◽  
pp. 95-105 ◽  
Author(s):  
A M Colberg-Poley ◽  
L D Santomenna ◽  
P P Harlow ◽  
P A Benfield ◽  
D J Tenney

2019 ◽  
Vol 70 (19) ◽  
pp. 5355-5374 ◽  
Author(s):  
Dandan Zang ◽  
Jingxin Wang ◽  
Xin Zhang ◽  
Zhujun Liu ◽  
Yucheng Wang

Abstract Plant heat shock transcription factors (HSFs) are involved in heat and other abiotic stress responses. However, their functions in salt tolerance are little known. In this study, we characterized the function of a HSF from Arabidopsis, AtHSFA7b, in salt tolerance. AtHSFA7b is a nuclear protein with transactivation activity. ChIP-seq combined with an RNA-seq assay indicated that AtHSFA7b preferentially binds to a novel cis-acting element, termed the E-box-like motif, to regulate gene expression; it also binds to the heat shock element motif. Under salt conditions, AtHSFA7b regulates its target genes to mediate serial physiological changes, including maintaining cellular ion homeostasis, reducing water loss rate, decreasing reactive oxygen species accumulation, and adjusting osmotic potential, which ultimately leads to improved salt tolerance. Additionally, most cellulose synthase-like (CSL) and cellulose synthase (CESA) family genes were inhibited by AtHSFA7b; some of them were randomly selected for salt tolerance characterization, and they were mainly found to negatively modulate salt tolerance. By contrast, some transcription factors (TFs) were induced by AtHSFA7b; among them, we randomly identified six TFs that positively regulate salt tolerance. Thus, AtHSFA7b serves as a transactivator that positively mediates salinity tolerance mainly through binding to the E-box-like motif to regulate gene expression.


Sign in / Sign up

Export Citation Format

Share Document