scholarly journals Morphological Cell Profiling of SARS-CoV-2 Infection Identifies Drug Repurposing Candidates for COVID-19

Author(s):  
Carmen Mirabelli ◽  
Jesse W. Wotring ◽  
Charles J. Zhang ◽  
Sean M. McCarty ◽  
Reid Fursmidt ◽  
...  

ABSTRACTThe global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the associated disease COVID-19, requires therapeutic interventions that can be rapidly identified and translated to clinical care. Traditional drug discovery methods have a >90% failure rate and can take 10-15 years from target identification to clinical use. In contrast, drug repurposing can significantly accelerate translation. We developed a quantitative high-throughput screen to identify efficacious agents against SARS-CoV-2. From a library of 1,425 FDA-approved compounds and clinical candidates, we identified 17 dose-responsive compounds with in vitro antiviral efficacy in human liver Huh7 cells and confirmed antiviral efficacy in human colon carcinoma Caco-2, human prostate adenocarcinoma LNCaP, and in a physiologic relevant model of alveolar epithelial type 2 cells (iAEC2s). Additionally, we found that inhibitors of the Ras/Raf/MEK/ERK signaling pathway exacerbate SARS-CoV-2 infection in vitro. Notably, we discovered that lactoferrin, a glycoprotein classically found in secretory fluids, including mammalian milk, inhibits SARS-CoV-2 infection in the nanomolar range in all cell models with multiple modes of action, including blockage of virus attachment to cellular heparan sulfate and enhancement of interferon responses. Given its safety profile, lactoferrin is a readily translatable therapeutic option for the management of COVID-19.IMPORTANCESince its emergence in China in December 2019, SARS-CoV-2 has caused a global pandemic. Repurposing of FDA-approved drugs is a promising strategy for identifying rapidly deployable treatments for COVID-19. Herein, we developed a pipeline for quantitative high-throughput image-based screening of SARS-CoV-2 infection in human cells that led to the identification of several FDA-approved drugs and clinical candidates with in vitro antiviral activity.

2021 ◽  
Vol 118 (36) ◽  
pp. e2105815118
Author(s):  
Carmen Mirabelli ◽  
Jesse W. Wotring ◽  
Charles J. Zhang ◽  
Sean M. McCarty ◽  
Reid Fursmidt ◽  
...  

The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the associated disease COVID-19, requires therapeutic interventions that can be rapidly identified and translated to clinical care. Traditional drug discovery methods have a >90% failure rate and can take 10 to 15 y from target identification to clinical use. In contrast, drug repurposing can significantly accelerate translation. We developed a quantitative high-throughput screen to identify efficacious agents against SARS-CoV-2. From a library of 1,425 US Food and Drug Administration (FDA)-approved compounds and clinical candidates, we identified 17 hits that inhibited SARS-CoV-2 infection and analyzed their antiviral activity across multiple cell lines, including lymph node carcinoma of the prostate (LNCaP) cells and a physiologically relevant model of alveolar epithelial type 2 cells (iAEC2s). Additionally, we found that inhibitors of the Ras/Raf/MEK/ERK signaling pathway exacerbate SARS-CoV-2 infection in vitro. Notably, we discovered that lactoferrin, a glycoprotein found in secretory fluids including mammalian milk, inhibits SARS-CoV-2 infection in the nanomolar range in all cell models with multiple modes of action, including blockage of virus attachment to cellular heparan sulfate and enhancement of interferon responses. Given its safety profile, lactoferrin is a readily translatable therapeutic option for the management of COVID-19.


Author(s):  
Pamali Fonseka ◽  
Sai V Chitti ◽  
Rahul Sanwlani ◽  
Suresh Mathivanan

AbstractRecently, the study by Im et al. focused on blocking the release of extracellular vesicles (EVs) by cancer cells, as a strategy to block metastasis, by deploying a drug repurposing screen. Upon screening the library of FDA approved drugs in breast cancer cells in vitro, the authors reported the ability of the antibiotic Sulfisoxazole (SFX) in inhibiting EV biogenesis and secretion. SFX was also effective in reducing breast primary tumor burden and blocking metastasis in immunocompromised and immunocompetent mouse models. As we seek a compound to block EV biogenesis and secretion in our current in vivo studies, we intended to use SFX and hence performed in vitro characterization as the first step. However, treatment of two cancer cells with SFX did not reduce the amount of EVs as reported by the authors.


2020 ◽  
Author(s):  
Kumar Sharp

Abstract SARS-CoV2 main protease is important for viral replication and one of the most potential targets for drug development in this current pandemic. Drug repurposing is a promising field to provide potential short-term acceptable therapy for management of coronavirus till a specific anti-viral for coronavirus is developed. In-silico drug repurposing screening is the current fastest way to repurpose drugs by targeting active sites in fraction of seconds. In this study, SARS-CoV2 main protease is being targeted by 1050 FDA-approved drugs to inhibit its activity thereby interfering with viral replication. Chemotherapeutic drugs and anti-retroviral drugs have shown potential binding as inhibitor. In-vitro and clinical trials required to establish final fact.


Author(s):  
Stuart Weston ◽  
Christopher M. Coleman ◽  
Rob Haupt ◽  
James Logue ◽  
Krystal Matthews ◽  
...  

AbstractSARS-CoV-2 emerged in China at the end of 2019 and has rapidly become a pandemic with roughly 2.7 million recorded COVID-19 cases and greater than 189,000 recorded deaths by April 23rd, 2020 (www.WHO.org). There are no FDA approved antivirals or vaccines for any coronavirus, including SARS-CoV-2. Current treatments for COVID-19 are limited to supportive therapies and off-label use of FDA approved drugs. Rapid development and human testing of potential antivirals is greatly needed. A quick way to test compounds with potential antiviral activity is through drug repurposing. Numerous drugs are already approved for human use and subsequently there is a good understanding of their safety profiles and potential side effects, making them easier to fast-track to clinical studies in COVID-19 patients. Here, we present data on the antiviral activity of 20 FDA approved drugs against SARS-CoV-2 that also inhibit SARS-CoV and MERS-CoV. We found that 17 of these inhibit SARS-CoV-2 at a range of IC50 values at non-cytotoxic concentrations. We directly follow up with seven of these to demonstrate all are capable of inhibiting infectious SARS-CoV-2 production. Moreover, we have evaluated two of these, chloroquine and chlorpromazine, in vivo using a mouse-adapted SARS-CoV model and found both drugs protect mice from clinical disease.


Author(s):  
Gaurav Joshi ◽  
Ramarao Poduri

Background: The rapid spread of SARS-CoV-2 has caused havoc and panic among individuals, which has further worsened due to the unavailability of a proven drug(s) regime. Objective: The current work involves drug repurposing from the pool of USFDA approved drugs involving in silico virtual screening technique against Covid-19. Methods: Methodology involves virtual screening of 8548 FDA approved drugs against target protein endoribonuclease NendoU (Nsp15) (PDB ID: 6VWW). Results: Virtual screening-based analysis enabled us to identify four drugs, Eprosartan, Inarigivir soproxil, Foretinib, and DB01813 that could plausibly target Nsp15 against Covid-19 disease. Conclusion: The work offers the scope to corroborate the findings via in vitro and in vivo techniques to identify the potential of selected leads against Covid-19. The outcome may also help in tracing their molecular mechanism(s) in addition to their development at the clinical level in the future.


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Ryan P. Trombetta ◽  
Paul M. Dunman ◽  
Edward M. Schwarz ◽  
Stephen L. Kates ◽  
Hani A. Awad

ABSTRACTDrug repurposing offers an expedited and economical route to develop new clinical therapeutics in comparison to traditional drug development. Growth-based high-throughput screening is concomitant with drug repurposing and enables rapid identification of new therapeutic uses for investigated drugs; however, this traditional method is not compatible with microorganisms with abnormal growth patterns such asStaphylococcus aureussmall-colony variants (SCV). SCV subpopulations are auxotrophic for key compounds in biosynthetic pathways, which result in low growth rate. SCV formation is also associated with reduced antibiotic susceptibility, and the SCV’s ability to revert to the normal cell growth state is thought to contribute to recurrence ofS. aureusinfections. Thus, there is a critical need to identify antimicrobial agents that are potent against SCV in order to effectively treat chronic infections. Accordingly, here we describe adapting an adenylate kinase (AK)-based cell death reporter assay to identify members of a Food and Drug Administration (FDA)-approved drug library that display bactericidal activity againstS. aureusSCV. Four library members, daunorubicin, ketoconazole, rifapentine, and sitafloxacin, exhibited potent SCV bactericidal activity against a stableS. aureusSCV. Further investigation showed that sitafloxacin was potent against methicillin-susceptible and -resistantS. aureus, as well asS. aureuswithin an established biofilm. Taken together, these results demonstrate the ability to use the AK assay to screen small-molecule libraries for SCV bactericidal agents and highlight the therapeutic potential of sitafloxacin to be repurposed to treat chronicS. aureusinfections associated with SCV and/or biofilm growth states.IMPORTANCEConventional antibiotics fail to successfully treat chronic osteomyelitis, endocarditis, and device-related and airway infections. These recurring infections are associated with the emergence of SCV, which are recalcitrant to conventional antibiotics. Studies have investigated antibiotic therapies to treat SCV-related infections but have had little success, emphasizing the need to identify novel antimicrobial drugs. However, drug discovery is a costly and time-consuming process. An alternative strategy is drug repurposing, which could identify FDA-approved and well-characterized drugs that could have off-label utility in treating SCV. In this study, we adapted a high-throughput AK-based assay to identify 4 FDA-approved drugs, daunorubicin, ketoconazole, rifapentine, and sitafloxacin, which display antimicrobial activity againstS. aureusSCV, suggesting an avenue for drug repurposing in order to effectively treat SCV-related infections. Additionally, this screening paradigm can easily be adapted for other drug/chemical libraries to identify compounds bactericidal against SCV.


2020 ◽  
Author(s):  
Shubhangi Kandwal ◽  
Darren Fayne

Abstract The COVID-19 pandemic has negatively affected human life globally. It has led to economic crises and health emergencies across the world, spreading rapidly among the human population and has caused many deaths. Currently, there are no treatments available for COVID-19 so there is an urgent need to develop therapeutic interventions that could be used against the novel coronavirus infection. In this research, we used computational drug design technologies to repurpose existing drugs as inhibitors of SARS-CoV-2 viral proteins. The Broad Institute’s Drug Repurposing Hub consists of in-development/approved drugs and was computationally screened to identify potential hits which could inhibit protein targets encoded by the SARS-CoV-2 genome. By virtually screening the Broad collection, using rationally designed pharmacophore features, we identified molecules which may be repurposed against viral nucleocapsid and non-structural proteins. The pharmacophore features were generated after careful visualisation of the interactions between co-crystalised ligands and the protein binding site. The ChEMBL database was used to determine the compound’s level of inhibition of SARS-CoV-2 and correlate the predicted viral protein target with whole virus in vitro data. The results from this study may help to accelerate drug development against COVID-19 and the hit compounds should be progressed through further in vitro and in vivo studies on SARS-CoV-2.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jennifer Keiser ◽  
Cécile Häberli

Abstract Background Infections with Strongyloides stercoralis belong to the most neglected helminth diseases, and research and development (R&D) efforts on novel drugs are inadequate. Methods A commercially available library containing 1600 FDA-approved drugs was tested in vitro against Strongyloides ratti larvae (L3) at 100 µM. Hits (activity > 70%) were then evaluated against S. ratti adult worms at 10 µM. Morantel, prasterone, and levamisole were tested in the S. ratti rat model using dosages of 1–100 mg/kg. Results Seventy-one of the 1600 compounds tested against S. ratti L3 revealed activity above 70%. Of 64 compounds which progressed into the adult screen, seven compounds achieved death of all worms (benzethonium chloride, cetylpyridinium chloride, Gentian violet, methylbenzethonium chloride, morantel citrate, ivermectin, coumaphos), and another eight compounds had activity > 70%. Excluding topical and toxic compounds, three drugs progressed into in vivo studies. Prasterone lacked activity in vivo, while treatment with 100 mg/kg morantel and levamisole cured all rats. The highest in vivo activity was observed with levamisole, yielding a median effective dose (ED50) of 1.1 mg/kg. Conclusions Using a drug repurposing approach, our study identified levamisole as a potential backup drug for strongyloidiasis. Levamisole should be evaluated in exploratory clinical trials. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document