scholarly journals Information theoretic approaches to deciphering the neural code with functional fluorescence imaging

2020 ◽  
Author(s):  
Jason R. Climer ◽  
Daniel A. Dombeck

AbstractInformation theoretic metrics have proven highly useful to quantify the relationship between behaviorally relevant parameters and neuronal activity with relatively few assumptions. However, such metrics are typically applied to action potential recordings and were not designed for the slow timescales and variable amplitudes typical of functional fluorescence recordings (e.g. calcium imaging). Therefore, the power of information theoretic metrics has yet to be fully exploited by the neuroscience community due to a lack of understanding for how to apply and interpret the metrics with such fluorescence traces. Here, we used computational methods to create mock action potential traces with known amounts of information and from them generated fluorescence traces to examine the ability of different information metrics to recover the known information values. We provide guidelines for the use of information metrics when applied to functional fluorescence and demonstrate their appropriate application to GCaMP6f population recordings from hippocampal neurons imaged during virtual navigation.

Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 858
Author(s):  
Dongshan He ◽  
Qingyu Cai

In this paper, we present a derivation of the black hole area entropy with the relationship between entropy and information. The curved space of a black hole allows objects to be imaged in the same way as camera lenses. The maximal information that a black hole can gain is limited by both the Compton wavelength of the object and the diameter of the black hole. When an object falls into a black hole, its information disappears due to the no-hair theorem, and the entropy of the black hole increases correspondingly. The area entropy of a black hole can thus be obtained, which indicates that the Bekenstein–Hawking entropy is information entropy rather than thermodynamic entropy. The quantum corrections of black hole entropy are also obtained according to the limit of Compton wavelength of the captured particles, which makes the mass of a black hole naturally quantized. Our work provides an information-theoretic perspective for understanding the nature of black hole entropy.


2007 ◽  
Vol 98 (6) ◽  
pp. 3666-3676 ◽  
Author(s):  
Hai Xia Zhang ◽  
Liu Lin Thio

Although extracellular Zn2+ is an endogenous biphasic modulator of strychnine-sensitive glycine receptors (GlyRs), the physiological significance of this modulation remains poorly understood. Zn2+ modulation of GlyR may be especially important in the hippocampus where presynaptic Zn2+ is abundant. Using cultured embryonic mouse hippocampal neurons, we examined whether 1 μM Zn2+, a potentiating concentration, enhances the inhibitory effects of GlyRs activated by sustained glycine applications. Sustained 20 μM glycine (EC25) applications alone did not decrease the number of action potentials evoked by depolarizing steps, but they did in 1 μM Zn2+. At least part of this effect resulted from Zn2+ enhancing the GlyR-induced decrease in input resistance. Sustained 20 μM glycine applications alone did not alter neuronal bursting, a form of hyperexcitability induced by omitting extracellular Mg2+. However, sustained 20 μM glycine applications depressed neuronal bursting in 1 μM Zn2+. Zn2+ did not enhance the inhibitory effects of sustained 60 μM glycine (EC70) applications in these paradigms. These results suggest that tonic GlyR activation could decrease neuronal excitability. To test this possibility, we examined the effect of the GlyR antagonist strychnine and the Zn2+ chelator tricine on action potential firing by CA1 pyramidal neurons in mouse hippocampal slices. Co-applying strychnine and tricine slightly but significantly increased the number of action potentials fired during a depolarizing current step and decreased the rheobase for action potential firing. Thus Zn2+ may modulate neuronal excitability normally and in pathological conditions such as seizures by potentiating GlyRs tonically activated by low agonist concentrations.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Renita Murimi

AbstractCities are microcosms representing a diversity of human experience. The complexity of urban systems arises from this diversity, where the services that cities offer to their inhabitants have to be tailored for their unique requirements. This paper studies the complexity of urban environments in terms of the assimilation of its communities. We examine the urban assimilation complexity with respect to the foreignness between communities and formalize the level of complexity using information-theoretic measures. Our findings contribute to a sociological perspective of the relationship between urban complex systems and the diversity of communities that make up urban systems.


2021 ◽  
Author(s):  
Alex A. Legaria ◽  
Julia A. Licholai ◽  
Alexxai V. Kravitz

AbstractFiber photometry recordings are commonly used as a proxy for neuronal activity, based on the assumption that increases in bulk calcium fluorescence reflect increases in spiking of the underlying neural population. However, this assumption has not been adequately tested. Here, using endoscopic calcium imaging in the striatum we report that the bulk fluorescence signal correlates weakly with somatic calcium signals, suggesting that this signal does not reflect spiking activity, but may instead reflect subthreshold changes in neuropil calcium. Consistent with this suggestion, the bulk fluorescence photometry signal correlated strongly with neuropil calcium signals extracted from these same endoscopic recordings. We further confirmed that photometry did not reflect striatal spiking activity with simultaneous in vivo extracellular electrophysiology and fiber photometry recordings in awake behaving mice. We conclude that the fiber photometry signal should not be considered a proxy for spiking activity in neural populations in the striatum.Significance statementFiber photometry is a technique for recording brain activity that has gained popularity in recent years due to it being an efficient and robust way to record the activity of genetically defined populations of neurons. However, it remains unclear what cellular events are reflected in the photometry signal. While it is often assumed that the photometry signal reflects changes in spiking of the underlying cell population, this has not been adequately tested. Here, we processed calcium imaging recordings to extract both somatic and non-somatic components of the imaging field, as well as a photometry signal from the whole field. Surprisingly, we found that the photometry signal correlated much more strongly with the non-somatic than the somatic signals. This suggests that the photometry signal most strongly reflects subthreshold changes in calcium, and not spiking. We confirmed this point with simultaneous fiber photometry and extracellular spiking recordings, again finding that photometry signals relate poorly to spiking in the striatum. Our results may change interpretations of studies that use fiber photometry as an index of spiking output of neural populations.


2018 ◽  
Author(s):  
R. D. Taylor ◽  
M. Heine ◽  
N. J. Emptage ◽  
L. C. Andreae

AbstractDirected transport of transmembrane proteins is generally believed to occur via intracellular transport vesicles. However, using single particle tracking in rat hippocampal neurons with a pH-sensitive quantum dot probe which specifically reports surface movement of receptors, we have identified a subpopulation of neuronal EphB2 receptors that exhibit directed motion between synapses within the plasma membrane itself. This receptor movement occurs independently of the cytoskeleton but is dependent on cholesterol and is regulated by neuronal activity.


2018 ◽  
Author(s):  
M. Ruttorf ◽  
S. Kristensen ◽  
L.R. Schad ◽  
J. Almeida

AbstractTranscranial direct current stimulation (tDCS) is routinely used in basic and clinical research, but its efficacy has been challenged on a methodological and statistical basis recently. The arguments against tDCS derive from insufficient understanding of how this technique interacts with brain processes physiologically. Because of its potential as a central tool in neuroscience, it is important to clarify whether and how tDCS affects neuronal activity. Here, we investigate influences of offline tDCS on network architecture measured by functional magnetic resonance imaging. Our results reveal a tDCS-induced reorganisation of a functionally-defined network that is dependent on whether we are exciting or inhibiting a node within this network, confirming in a functioning brain, and in a bias free and independent fashion that tDCS influences neuronal activity. Moreover, our results suggest that network-specific connectivity has an important role in defining the effects of tDCS and the relationship between brain states and behaviour.


Sign in / Sign up

Export Citation Format

Share Document