scholarly journals Performance characterization of PCR-free whole genome sequencing for clinical diagnosis

2020 ◽  
Author(s):  
Ningzhi Zhang ◽  
Meizhen Zhou ◽  
Fanwei Zeng ◽  
Xiaodan Wang ◽  
Fengxia Liu ◽  
...  

AbstractPurposeTo evaluate the performance of PCR-free whole genome sequencing (WGS) for clinical diagnosis, and thereby revealing how experimental parameters affect variant detection.MethodsAll the 5 NA12878 samples were sequenced using MGISEQ-2000. NA12878 samples underwent WGS with differing DNA input and library preparation protocol (PCR-based versus PCR-free protocols for library preparation). The DP (depth of coverage) and GQ (genotype quality) of each sample were compared. We developed a systematic WGS pipeline for the analysis of down-sampling samples of the 5 NA12878 samples. The performance of each sample was measured for sensitivity, coverage of depth and breadth of coverage of disease-related genes and CNVs.ResultsIn general, NA12878-2 (PCR-free WGS) showed better DP and GQ distribution than NA12878-1 (PCR-based WGS). With a mean depth of ~40X, the sensitivity of homozyous and heterozygous SNPs of NA12878-2 showed higher sensitivity (>99.77% and > 99.82%) than NA12878-1, and positive predictive value (PPV) exceeded 99.98% and 99.07%. The sensitivity and PPV of homozygous and heterozygous indels for NA12878-2 (PCR-free WGS) showed great improvement than NA128878-1. The breadths of coverage for disease-related genes and CNVs are slightly better for samples with PCR-free library preparation protocol than the sample with PCR-based library preparation protocol. DNA input also influences the performance of variant detection in samples with PCR-free WGS.ConclusionDifferent experimental parameters may affect variant detection for clinical WGS. Clinical scientists should know the range of sensitivity of variants for different methods of WGS, which would be useful when interpreting and delivering clinical reports.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kathy E. Raven ◽  
Sophia T. Girgis ◽  
Asha Akram ◽  
Beth Blane ◽  
Danielle Leek ◽  
...  

AbstractWhole-genome sequencing is likely to become increasingly used by local clinical microbiology laboratories, where sequencing volume is low compared with national reference laboratories. Here, we describe a universal protocol for simultaneous DNA extraction and sequencing of numerous different bacterial species, allowing mixed species sequence runs to meet variable laboratory demand. We assembled test panels representing 20 clinically relevant bacterial species. The DNA extraction process used the QIAamp mini DNA kit, to which different combinations of reagents were added. Thereafter, a common protocol was used for library preparation and sequencing. The addition of lysostaphin, lysozyme or buffer ATL (a tissue lysis buffer) alone did not produce sufficient DNA for library preparation across the species tested. By contrast, lysozyme plus lysostaphin produced sufficient DNA across all 20 species. DNA from 15 of 20 species could be extracted from a 24-h culture plate, while the remainder required 48–72 h. The process demonstrated 100% reproducibility. Sequencing of the resulting DNA was used to recapitulate previous findings for species, outbreak detection, antimicrobial resistance gene detection and capsular type. This single protocol for simultaneous processing and sequencing of multiple bacterial species supports low volume and rapid turnaround time by local clinical microbiology laboratories.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Weili Cai ◽  
Schyler Nunziata ◽  
John Rascoe ◽  
Michael J. Stulberg

AbstractHuanglongbing (HLB) is a worldwide deadly citrus disease caused by the phloem-limited bacteria ‘Candidatus Liberibacter asiaticus’ (CLas) vectored by Asian citrus psyllids. In order to effectively manage this disease, it is crucial to understand the relationship among the bacterial isolates from different geographical locations. Whole genome sequencing approaches will provide more precise molecular characterization of the diversity among populations. Due to the lack of in vitro culture, obtaining the whole genome sequence of CLas is still a challenge, especially for medium to low titer samples. Hundreds of millions of sequencing reads are needed to get good coverage of CLas from an HLB positive citrus sample. In order to overcome this limitation, we present here a new method, Agilent SureSelect XT HS target enrichment, which can specifically enrich CLas from a metagenomic sample while greatly reducing cost and increasing whole genome coverage of the pathogen. In this study, the CLas genome was successfully sequenced with 99.3% genome coverage and over 72X sequencing coverage from low titer tissue samples (equivalent to 28.52 Cq using Li 16 S qPCR). More importantly, this method also effectively captures regions of diversity in the CLas genome, which provides precise molecular characterization of different strains.


2022 ◽  
Author(s):  
Jason Nguyen ◽  
Rebecca Hickman ◽  
Tracy Lee ◽  
Natalie Prystajecky ◽  
John Tyson

This procedure provides instructions on how to prepare DNA libraries for whole genome sequencing on an Illumina MiSeq or NextSeq using Illumina’s DNA Prep Library Preparation Kit scaled to half reaction volumes with modifications to the post-PCR procedures; tagmentation stop buffer and associated washes are removed and libraries are pooled post PCR then a single size selection is performed. This protocol is used to sequence SARS-CoV-2 using the cDNA/PCR protocol: https://dx.doi.org/10.17504/protocols.io.b3viqn4e


Genome ◽  
2020 ◽  
Vol 63 (8) ◽  
pp. 397-405
Author(s):  
Xiaowen Yang ◽  
Ning Wang ◽  
Xiaofang Cao ◽  
Pengfei Bie ◽  
Zhifeng Xing ◽  
...  

Brucella spp., facultative intracellular pathogens that can persistently colonize animal host cells and cause zoonosis, affect public health and safety. A Brucella strain was isolated from yak in Qinghai Province. To detect whether this isolate could cause an outbreak of brucellosis and to reveal its genetic characteristics, several typing and whole-genome sequencing methods were applied to identify its species and genetic characteristics. Phylogenetic analysis based on MLVA and whole-genome sequencing revealed the genetic characteristics of the isolated strain. The results showed that the isolated strain is a B. suis biovar 1 smooth strain, and this isolate was named B. suis QH05. The results of comparative genomics and MLVA showed that B. suis QH05 is not a vaccine strain. Comparison with other B. suis strains isolated from humans and animals indicated that B. suis QH05 may be linked to specific animal and human sources. In conclusion, B. suis QH05 does not belong to the Brucella epidemic species in China, and as the first isolation of B. suis from yak, this strain expands the host range of B. suis.


2020 ◽  
Vol 17 (2) ◽  
pp. 126-136 ◽  
Author(s):  
Valentina Trinetta ◽  
Gabriela Magossi ◽  
Marc W. Allard ◽  
Sandra M. Tallent ◽  
Eric W. Brown ◽  
...  

Virus Genes ◽  
2011 ◽  
Vol 43 (2) ◽  
pp. 261-271 ◽  
Author(s):  
Muhammad Munir ◽  
Anna-Malin Linde ◽  
Siamak Zohari ◽  
Karl Ståhl ◽  
Claudia Baule ◽  
...  

2016 ◽  
Vol 2017 (3) ◽  
pp. pdb.prot094623 ◽  
Author(s):  
Elaine Mardis ◽  
W. Richard McCombie

Sign in / Sign up

Export Citation Format

Share Document