scholarly journals Determination of COVID-19 parameters for an agent-based model: Easing or tightening control strategies

Author(s):  
Ali Najmi ◽  
Farshid Safarighouzhdi ◽  
Eric J. Miller ◽  
Raina MacIntyre ◽  
Taha H. Rashidi

Different agent-based models have been developed to estimate the spread progression of coronavirus disease 2019 (COVID-19) and to evaluate different control strategies to control outbreak of the infectious disease. While there are several estimation methods for the disease-specific parameters of COVID-19, they have been used for aggregate level models such as SIR and not for agent-based models. We propose a mathematical structure to determine parameter values of agent-based models considering the mutual effects of parameters. Then, we assess the extent to which different control strategies can intervene the transmission of COVID-19. Accordingly, we consider scenarios of easing social distancing restrictions, opening businesses, speed of enforcing control strategies and quarantining family members of isolated cases on the disease progression. We find the social distancing compliance level in the Sydney greater metropolitan area to be around 85%. Then we elaborate on consequences of easing the compliance level in the disease suppression. We also show that tight social distancing levels should be considered when the restrictions on businesses and activity participations are easing.

Author(s):  
Nicolas Hoertel ◽  
Martin Blachier ◽  
Carlos Blanco ◽  
Mark Olfson ◽  
Marc Massetti ◽  
...  

AbstractMost European countries have responded to the COVID-19 threat by nationwide implementation of barrier measures and lockdown. However, assuming that population immunity will build up through the epidemic, it is likely to rebound once these measures are relaxed, possibly leading to a second or multiple repeated lockdowns. In this report, we present results of epidemiological modelling that has helped inform policy making in France. We used a stochastic agent-based microsimulation model of the COVID-19 epidemic in France, and examined the potential impact of post-quarantine measures, including social distancing, mask-wearing, and shielding of the population the most vulnerable to severe COVID-19 infection, on the disease’s cumulative incidence and mortality, and on ICU-bed occupancy. The model calibrated well and variation of model parameter values had little impact on outcome estimates. While quarantine is effective in containing the viral spread, it would be unlikely to prevent a rebound of the epidemic once lifted, regardless of its duration. Both social distancing and mask-wearing, although effective in slowing the epidemic and in reducing mortality, would also be ineffective in ultimately preventing the overwhelming of ICUs and a second lockdown. However, these measures coupled with shielding of vulnerable people would be associated with better outcomes, including lower cumulative incidence, mortality, and maintaining an adequate number of ICU beds to prevent a second lockdown. Benefits would nonetheless be markedly reduced if these measures were not applied by most people or not maintained for a sufficiently long period, as herd immunity progressively establishes in the less vulnerable population.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 85
Author(s):  
Jorge Lopez-Jimenez ◽  
Nicanor Quijano ◽  
Alain Vande Wouwer

Climate change and the efficient use of freshwater for irrigation pose a challenge for sustainable agriculture. Traditionally, the prediction of agricultural production is carried out through crop-growth models and historical records of the climatic variables. However, one of the main flaws of these models is that they do not consider the variability of the soil throughout the cultivation area. In addition, with the availability of new information sources (i.e., aerial or satellite images) and low-cost meteorological stations, it is convenient that the models incorporate prediction capabilities to enhance the representation of production scenarios. In this work, an agent-based model (ABM) that considers the soil heterogeneity and water exchanges is proposed. Soil heterogeneity is associated to the combination of individual behaviours of uniform portions of land (agents), while water fluxes are related to the topography. Each agent is characterized by an individual dynamic model, which describes the local crop growth. Moreover, this model considers positive and negative effects of water level, i.e., drought and waterlogging, on the biomass production. The development of the global ABM is oriented to the future use of control strategies and optimal irrigation policies. The model is built bottom-up starting with the definition of agents, and the Python environment Mesa is chosen for the implementation. The validation is carried out using three topographic scenarios in Colombia. Results of potential production cases are discussed, and some practical recommendations on the implementation are presented.


2021 ◽  
Author(s):  
Ali Najmi ◽  
Sahar Nazari ◽  
Farshid Safarighouzhdi ◽  
Eric J. Miller ◽  
Raina MacIntyre ◽  
...  

2021 ◽  
pp. 0272989X2110030
Author(s):  
Serin Lee ◽  
Zelda B. Zabinsky ◽  
Judith N. Wasserheit ◽  
Stephen M. Kofsky ◽  
Shan Liu

As the novel coronavirus (COVID-19) pandemic continues to expand, policymakers are striving to balance the combinations of nonpharmaceutical interventions (NPIs) to keep people safe and minimize social disruptions. We developed and calibrated an agent-based simulation to model COVID-19 outbreaks in the greater Seattle area. The model simulated NPIs, including social distancing, face mask use, school closure, testing, and contact tracing with variable compliance and effectiveness to identify optimal NPI combinations that can control the spread of the virus in a large urban area. Results highlight the importance of at least 75% face mask use to relax social distancing and school closure measures while keeping infections low. It is important to relax NPIs cautiously during vaccine rollout in 2021.


2002 ◽  
Vol 757 ◽  
Author(s):  
W. L. Ebert ◽  
J. C. Cunnane ◽  
N. L. Dietz

ABSTRACTThis paper describes how the results of vapor hydration tests (VHTs) are used to model the corrosion of waste glasses exposed to humid air in the glass degradation model for total system performance assessment (TSPA) calculations for the proposed Yucca Mountain disposal system. Corrosion rates measured in VHTs conducted at 125, 150, 175, and 200°C are compared with the rate equation for aqueous dissolution to determine parameter values that are applicable to glass degradation in humid air. These will be used to determine the minimum for the range and distribution of parameter values in calculations for the Yucca Mountain disposal system license application (TSPA-LA). The rate equation for glass dissolution is rate = kE • 10 η • pH • exp(–Ea/RT). Uncertainties in the calculated rate due to the range of waste glass compositions and water exposure conditions are taken into account by using a range of values for the rate coefficient kE. The parameter values for the pH dependence (η) and temperature dependence (Ea) and the upper limit for kE are being determined with other tests. Using the values of η and Ea from the site recommendation model, the VHT results described in this paper provide a value of log kE = 5.1 as the minimum value for the rate expression. This value will change slightly if different pH-and temperature-dependencies are used for the TSPA-LA model.


2021 ◽  
Vol 9 (2) ◽  
pp. 417
Author(s):  
Sherli Koshy-Chenthittayil ◽  
Linda Archambault ◽  
Dhananjai Senthilkumar ◽  
Reinhard Laubenbacher ◽  
Pedro Mendes ◽  
...  

The human microbiome has been a focus of intense study in recent years. Most of the living organisms comprising the microbiome exist in the form of biofilms on mucosal surfaces lining our digestive, respiratory, and genito-urinary tracts. While health-associated microbiota contribute to digestion, provide essential nutrients, and protect us from pathogens, disturbances due to illness or medical interventions contribute to infections, some that can be fatal. Myriad biological processes influence the make-up of the microbiota, for example: growth, division, death, and production of extracellular polymers (EPS), and metabolites. Inter-species interactions include competition, inhibition, and symbiosis. Computational models are becoming widely used to better understand these interactions. Agent-based modeling is a particularly useful computational approach to implement the various complex interactions in microbial communities when appropriately combined with an experimental approach. In these models, each cell is represented as an autonomous agent with its own set of rules, with different rules for each species. In this review, we will discuss innovations in agent-based modeling of biofilms and the microbiota in the past five years from the biological and mathematical perspectives and discuss how agent-based models can be further utilized to enhance our comprehension of the complex world of polymicrobial biofilms and the microbiome.


Sign in / Sign up

Export Citation Format

Share Document