scholarly journals An Age-Specific Atlas for Delineation of White Matter Pathways in Children Aged 6-8 Years

2020 ◽  
Author(s):  
Arthur P.C. Spencer ◽  
Hollie Byrne ◽  
Richard Lee-Kelland ◽  
Sally Jary ◽  
Marianne Thoresen ◽  
...  

AbstractDiffusion MRI allows non-invasive assessment of white matter maturation in typical development and of white matter damage due to brain injury or pathology. Probabilistic white matter atlases provide delineation of white matter tracts, allowing diffusion metrics to be measured in specific white matter pathways. However, given the known age-dependency of developmental change in white matter it may not be optimal to use an adult template when assessing data acquired from children. This study develops an age-specific probabilistic white matter atlas for delineation of 12 major white matter tracts in children aged 6-8 years. By comparing to subject-specific tract tracing in two validation cohorts, we demonstrate that this age-specific atlas gives better overall performance than simply registering to the Johns Hopkins University adult white matter template. Specifically, when normalising diffusion data acquired from children to an adult template, estimates of fractional anisotropy (FA) values for corticospinal tract, uncinate fasciculus, forceps minor, cingulate gyrus part of the cingulum and anterior thalamic radiation were all less accurate than those obtained when using an age-specific atlas, potentially leading to false negatives when performing group comparisons. We then applied the newly developed atlas to compare FA between children treated with therapeutic hypothermia for neonatal encephalopathy and age-matched controls, which revealed significant reductions in the fornix, the left superior longitudinal fasciculus, and both the hippocampal and cingulum parts of the left cingulate gyrus. To our knowledge, this is the first publicly available probabilistic atlas of white matter tracts for this age group.

Author(s):  
Eman Mohamed Helmy ◽  
Amal A. Sakrana ◽  
Sherif Abdel-Fattah ◽  
Amany Ragab Elsaid

Abstract Background Diffusion tensor imaging (DTI) is a non-invasive MR modality that provides an evaluation of brain tissue microstructure and architecture in vivo. We aimed to assess the diagnostic value of DTI parameters in evaluating cerebral white matter integrity in patients of severe chronic obstructive pulmonary disease (COPD) and correlate these parameters with smoking index (SI) and the number of exacerbations in the last year. This prospective study included 30 COPD male past smoker patients and 15 age- and sex-matched nonsmoker controls. Staging of COPD, SI and number of exacerbations in the last year were obtained. Routine brain MRI and DTI were done in all subjects. The selected white matter tracts’ fractional anisotropy (FA), and mean diffusivity (MD) were calculated in the region of interest in axial slices. Results The mean FA and MD values of all selected white matter tracts showed a high significant difference (p < 0.001) between patients and control group. The correlation between FA, SI and exacerbation frequency was not significant in the majority of white matter tracts (p > 0.05). The correlation between MD, SI and exacerbation frequency was significant for the majority of tracts (p < 0.05). Conclusion DTI metrics are valuable non-invasive tools in evaluating the white matter abnormalities in COPD patients. Smoking index and frequency of exacerbations have possible relation to extra-pulmonary cerebral manifestations of COPD.


2019 ◽  
Author(s):  
Tobias W. Meissner ◽  
Erhan Genç ◽  
Burkhard Mädler ◽  
Sarah Weigelt

AbstractAxonal myelination is a key white matter maturation process as it increases conduction velocity, synchrony, and reliability. While diffusion tensor imaging (DTI) is sensitive to myelination, it is also sensitive to unrelated microstructural properties, thus hindering straightforward interpretations. Myelin water imaging (MWI) provides a more reliable and direct in vivo measure of myelination. Although early histological studies show protracted myelination from childhood to adulthood, reliable tract-specific in vivo evidence from MWI is still lacking. Here, we combine MWI and DTI tractography to investigate myelination in middle childhood, late childhood, and adulthood in 18 major white matter tracts. In the vast majority of major white matter tracts, myelin water fraction continued to increase beyond late childhood. Our study provides first in vivo evidence for protracted myelination beyond late childhood.


2020 ◽  
Vol 21 (18) ◽  
pp. 6568
Author(s):  
Marc Melià-Sorolla ◽  
Carlos Castaño ◽  
Núria DeGregorio-Rocasolano ◽  
Luis Rodríguez-Esparragoza ◽  
Antoni Dávalos ◽  
...  

In the search of animal stroke models providing translational advantages for biomedical research, pigs are large mammals with interesting brain characteristics and wide social acceptance. Compared to rodents, pigs have human-like highly gyrencephalic brains. In addition, increasingly through phylogeny, animals have more sophisticated white matter connectivity; thus, ratios of white-to-gray matter in humans and pigs are higher than in rodents. Swine models provide the opportunity to study the effect of stroke with emphasis on white matter damage and neuroanatomical changes in connectivity, and their pathophysiological correlate. In addition, the subarachnoid space surrounding the swine brain resembles that of humans. This allows the accumulation of blood and clots in subarachnoid hemorrhage models mimicking the clinical condition. The clot accumulation has been reported to mediate pathological mechanisms known to contribute to infarct progression and final damage in stroke patients. Importantly, swine allows trustworthy tracking of brain damage evolution using the same non-invasive multimodal imaging sequences used in the clinical practice. Moreover, several models of comorbidities and pathologies usually found in stroke patients have recently been established in swine. We review here ischemic and hemorrhagic stroke models reported so far in pigs. The advantages and limitations of each model are also discussed.


2004 ◽  
Author(s):  
Z. Nagy ◽  
◽  
H. Westerberg ◽  
T. Klingberg

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S262-S262
Author(s):  
Terubumi Watanabe ◽  
Yoshiko Yanagi ◽  
Takao Urabe ◽  
Yoshikuni Mizuno

2010 ◽  
Vol 41 (01) ◽  
Author(s):  
J Faber ◽  
JC Schöne-Bake ◽  
C Melzer ◽  
M Tittgemeyer ◽  
B Weber

2014 ◽  
Vol 45 (3) ◽  
pp. 334-345 ◽  
Author(s):  
Paweł Krukow

AbstractAlthough considerable research has been devoted to cognitive functions deteriorating due to diseases of cardiovascular system, rather less attention has been paid to their theoretical background. Progressive vascular disorders as hypertension, atherosclerosis and carotid artery stenosis generate most of all pathological changes in the white matter, that cause specific cognitive disorder: disconnection syndromes, and disturbances in the dynamic aspect of information processing. These features made neuropsychological disorders secondary to cardiovascular diseases different than the effects of cerebral cortex damage, which may be interpreted modularly.


2019 ◽  
Author(s):  
Justin C. Hayes ◽  
Katherine L Alfred ◽  
Rachel Pizzie ◽  
Joshua S. Cetron ◽  
David J. M. Kraemer

Modality specific encoding habits account for a significant portion of individual differences reflected in functional activation during cognitive processing. Yet, little is known about how these habits of thought influence long-term structural changes in the brain. Traditionally, habits of thought have been assessed using self-report questionnaires such as the visualizer-verbalizer questionnaire. Here, rather than relying on subjective reports, we measured habits of thought using a novel behavioral task assessing attentional biases toward picture and word stimuli. Hypothesizing that verbal habits of thought are reflected in the structural integrity of white matter tracts and cortical regions of interest, we used diffusion tensor imaging and volumetric analyses to assess this prediction. Using a whole-brain approach, we show that word bias is associated with increased volume in several bilateral language regions, in both white and grey matter parcels. Additionally, connectivity within white matter tracts within an a priori speech production network increased as a function of word bias. These results demonstrate long-term structural and morphological differences associated with verbal habits of thought.


Sign in / Sign up

Export Citation Format

Share Document