scholarly journals Modelling movement and landscape connectivity of New Zealand native birds in highly structured agroecosystem networks

2020 ◽  
Author(s):  
Jingjing Zhang ◽  
Jennifer L. Pannell ◽  
Bradley S. Case ◽  
Graham Hinchliffe ◽  
Margaret C. Stanley ◽  
...  

AbstractUnderstanding how spatial heterogeneity affects movement and dispersal is critical for maintaining functional connectivity in agroecosystems. Least-cost path models are popular conservation tools to quantify the cost of a species dispersing though the landscapes. However, the variability of species in life history traits and landscape configurations can affect their space-use patterns and should be considered in agroecosystem management aiming to improve functional biodiversity. In this study, we modelled the connectivity properties of native species on a real agroecosystem landscape dominated by sheep and beef farming in north Canterbury, New Zealand, where the recovery of native bird population is desired. We chose two species to act as case studies that were contrasting in their mobility: New Zealand pigeon/kererū (Hemiphaga novaeseelandiae; highly mobile) and southern brown kiwi/tokoeka (Apteryx australis; flightless). Networks of the least-cost paths of kererū and tokoeka were constructed based on their habitat preferences and movement capacities, and we compared and contrasted the connectivity properties and network topographies of their networks. We then compared the network metrics of western side (higher density of forest) with the eastern side (dominated by grazed grassland) of the study area where the vegetation composition was vastly different for both species. The results shown three variables were the most important contributors to the structure of the dispersal networks: the nature of the matrix, spatial structure of vegetation patches, and the gap-crossing ability of the study species. Tokoeka were able to utilise smaller habitat patches as stepping-stones for dispersal, while kererū can select more preferred habitat patches due to their high movement capacity. In contrast to the eastern side, we observed the western/forested side to have more, and stronger, links among habitat patches for both species, due to the presence of several large patches of native forest. Our work suggested that one size does not fit all, rather, conservation strategies that account for species’ life histories and movement traits are required to identify and preserve a connected ecological network.

2021 ◽  
Vol 13 (4) ◽  
pp. 1656
Author(s):  
Jingjie Zhang ◽  
Feng Jiang ◽  
Zhenyuan Cai ◽  
Yunchuan Dai ◽  
Daoxin Liu ◽  
...  

Habitat connectivity is indispensable for the survival of species that occupy a small habitat area and have isolated habitat patches from each other. At present, the development of human economy squeezes the living space of wildlife and interferes and hinders the dispersal of species. The Przewalski’s gazelle (Procapra przewalskii) is one of the most endangered ungulates, which has experienced a significant reduction in population and severe habitat shrinkage. Although the population of this species has recovered to a certain extent, human infrastructure severely hinders the gene flow between several patches of this species. Therefore, we used the maximum entropy (MaxEnt) model to simulate the habitat suitability of the Przewalski’s gazelle. In addition, we combined habitat suitability and ecological characteristics of the species to obtain eight habitat patches. Finally, we used the least-cost path (LCP) and circuit theory based on the resistance model to simulate the landscape network of this species. The results showed that habitat patches and connectivity in the east of the Qinghai Lake were crucial to the communication between populations of the Przewalski gazelle, and our study provided important reference for the distribution of important habitats and the construction of corridor between patches. Our study aimed to provide habitat networks and maintain landscape connectivity for achieving the fundamental goal of protecting and revitalizing populations of the Przewalski’s gazelle.


2021 ◽  
Vol 8 ◽  
Author(s):  
Shiliang Liu ◽  
FangFang Wang ◽  
Li Deng ◽  
Yuhong Dong ◽  
Yixuan Liu

Dam construction is a major threat to terrestrial ecological processes that exhibit spatial variation. As an effective indicator of species movements at large scales, the dynamics of forest landscape connectivity for the dispersal abilities of local species such as primates both upstream and downstream of the Manwan hydropower station were compared in three periods: before, during, and after dam construction (in 1974, 1988, and 2004, respectively). The equivalent connected area (ECA) index which was modified from the probability of connectivity (PC) index based on the graph theory was applied in this study. We used this method to analyze the spatial and temporal changes in the overall forest landscape connectivity due to dam construction. The results showed that forest connectivity decreased after dam construction. The forest connectivity upstream was much greater than that downstream in 1974 but was lower in 1988 and 2004. The importance of connectivity increased with increasing dispersal distance. Only 8, 12, and 18% of forest patches of small area exhibited changes in 1974, 1988, and 2004, respectively. Most of the large habitat patches (i.e., those with dECA values >50%) remained stable, and the greatest patch changes were found at a dispersal distance of 400 m in all three periods. These large forest patch changes often occurred near the boundary of the study area. The Betweenness Centrality indicator, which identifies patches as stepping stones while accounting for ecological processes and biological flows at a larger scale, indicated that some habitat patches near Manwan Dam acted as stepping stones in maintaining the forest connectivity. Furthermore, rank correlations between the forest patch area and the three dPC (intra, flux, connector) fractions indicated that the dPCflux indicator can be used to measure the prioritization of habitat patches.


2017 ◽  
Vol 26 (14) ◽  
pp. 3465-3479 ◽  
Author(s):  
Lorena P. Herrera ◽  
Malena C. Sabatino ◽  
Florencia R. Jaimes ◽  
Santiago Saura

2021 ◽  
Vol 13 (8) ◽  
Author(s):  
Matthew Campbell ◽  
Julian Lilkendey ◽  
Malcolm Reid ◽  
Richard Walter ◽  
Kavindra Wijenayake ◽  
...  

2018 ◽  
Vol 45 (4) ◽  
pp. 366 ◽  
Author(s):  
Faye Wedrowicz ◽  
Jennifer Mosse ◽  
Wendy Wright ◽  
Fiona E. Hogan

Context Pathogenic infections are an important consideration for the conservation of native species, but obtaining such data from wild populations can be expensive and difficult. Two pathogens have been implicated in the decline of some koala (Phascolarctos cinereus) populations: urogenital infection with Chlamydia pecorum and koala retrovirus subgroup A (KoRV-A). Pathogen data for a wild koala population of conservation importance in South Gippsland, Victoria are essentially absent. Aims This study uses non-invasive sampling of koala scats to provide prevalence and genotype data for C. pecorum and KoRV-A in the South Gippsland koala population, and compares pathogen prevalence between wild koalas and koalas in rescue shelters. Methods C. pecorum and KoRV-A provirus were detected by PCR of DNA isolated from scats collected in the field. Pathogen genetic variation was investigated using DNA sequencing of the C. pecorum ompA and KoRV-A env genes. Key results C. pecorum and KoRV-A were detected in 61% and 27% of wild South Gippsland individuals tested, respectively. KoRV-A infection tended to be higher in shelter koalas compared with wild koalas. In contrast with other Victorian koala populations sampled, greater pathogen diversity was present in South Gippsland. Conclusions In the South Gippsland koala population, C. pecorum is widespread and common whereas KoRV appears less prevalent than previously thought. Further work exploring the dynamics of these pathogens in South Gippsland koalas is warranted and may help inform future conservation strategies for this important population. Implications Non-invasive genetic sampling from scats is a powerful method for obtaining data regarding pathogen prevalence and diversity in wildlife. The use of non-invasive methods for the study of pathogens may help fill research gaps in a way that would be difficult or expensive to achieve using traditional methods.


2013 ◽  
Vol 22 (1) ◽  
pp. 6-12 ◽  
Author(s):  
Gustavo Seron Sanches ◽  
Thiago Fernandes Martins ◽  
Ileyne Tenório Lopes ◽  
Luís Flávio da Silva Costa ◽  
Pablo Henrique Nunes ◽  
...  

In the present study, we report tick infestations on wild birds in plots of the Atlantic Forest reforested fragments with native species and plots reforested with Eucalyptus tereticornis in the municipality of Rio Claro, State of Sao Paulo, Brazil. A total of 256 birds were captured: 137 individuals of 33 species, in planted native forest; and 128 individuals of 37 species, in planted Eucalyptus tereticornis forest. Nymphs of two tick species were found on the birds: Amblyomma calcaratumand Amblyomma longirostre, the former was more abundant in the fragments reforested with Atlantic forest native species, and the latter in the fragment reforested with E. tereticornis. New host records were presented for A. calcaratum.


Web Ecology ◽  
2001 ◽  
Vol 2 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Z. Elek ◽  
T. Magura ◽  
T. Tóthmérész

Abstract. The impacts of non-native Norway spruce plantation on the abundance and species richness of carabids were studied in the Bükk National Park in Hungary, central Europe. Pitfall catches from recently established (5 yr old), young (15 yr after planting), middle-aged (30 yr after planting), old Norway spruce Picea abies plantation (50 yr after planting), and a native submontane beech forest (Fagetum sylvaticae) as a control stand were compared. Our results showed that deciduous forest species decreased significantly in abundance in the plantations, and appeared in high abundance only in the native beech forest. Furthermore, open habitat species increased remarkably in abundance in the recently established plantation. Carabids were significantly more abundant and species rich in the native forest than in the plantations, while differences were not significant among the plantations. Multiple regression between the abundance and species richness of carabids and twelve environmental measurements showed that pH of the soil, herb cover and density of the carabids’ prey had a significant effect in determining abundance and species richness. Our results showed that plantation of non-native Norway spruce species had a detrimental effect on the composition of carabid communities and no regeneration could be observed during the growth of plantations even 50 yr after the establishment. This emphasises the importance of an active nature management practice to facilitate the recolonization of the native species.


2019 ◽  
Vol 49 ◽  
Author(s):  
Lisa A. Berndt ◽  
Eckehard G. Brockerhoff

Background: Land cover changes during the recent history of New Zealand have had a major impact on its largely endemic and iconic biodiversity. As in many other countries, large areas of native forest have been replaced by other land cover and are now in exotic pasture grassland or plantation forest. Ground beetles (Carabidae) are often used as ecological indicators, they provide ecosystem services such as pest control, and some species are endangered. However, few studies in New Zealand have assessed the habitat value for carabid beetles of natural forest, managed regenerating natural forest, pine plantation forest and pasture. Methods: We compared the carabid beetle assemblages of natural forest of Nothofagus solandri var solandri (also known as Fuscospora solandri or black beech), regenerating N. solandri forest managed for timber production, exotic pine plantation forest and exotic pasture, using pitfall traps. The study was conducted at Woodside Forest in the foothills of the Southern Alps, North Canterbury, New Zealand, close to an area where the critically endangered carabid Holcaspis brevicula was found. Results: A total of 1192 carabid individuals from 23 species were caught during the study. All but two species were native to New Zealand, with the exotic species present only in low numbers and one of these only in the pasture habitat. Carabid relative abundance and the number of species was highest in the pine plantation, where a total of 15 species were caught; however, rarefied species richness did not differ significantly between habitats. The sampled carabid beetle assemblages were similar across the three forested habitat types but differed significantly from the pasture assemblages based on unconstrained and canonical analyses of principal coordinates. Holcaspis brevicula was not detected in this area. Conclusions: Our results show that managed or exotic habitats may provide habitat to species-rich carabid assemblages although some native species occur only in natural, undisturbed vegetation. Nevertheless, it is important to acknowledge the potential contribution of these land uses and land cover types to the conservation of native biodiversity and to consider how these can be managed to maximise conservation opportunities.


Sign in / Sign up

Export Citation Format

Share Document