scholarly journals Using non-invasive sampling methods to determine the prevalence and distribution of Chlamydia pecorum and koala retrovirus in a remnant koala population with conservation importance

2018 ◽  
Vol 45 (4) ◽  
pp. 366 ◽  
Author(s):  
Faye Wedrowicz ◽  
Jennifer Mosse ◽  
Wendy Wright ◽  
Fiona E. Hogan

Context Pathogenic infections are an important consideration for the conservation of native species, but obtaining such data from wild populations can be expensive and difficult. Two pathogens have been implicated in the decline of some koala (Phascolarctos cinereus) populations: urogenital infection with Chlamydia pecorum and koala retrovirus subgroup A (KoRV-A). Pathogen data for a wild koala population of conservation importance in South Gippsland, Victoria are essentially absent. Aims This study uses non-invasive sampling of koala scats to provide prevalence and genotype data for C. pecorum and KoRV-A in the South Gippsland koala population, and compares pathogen prevalence between wild koalas and koalas in rescue shelters. Methods C. pecorum and KoRV-A provirus were detected by PCR of DNA isolated from scats collected in the field. Pathogen genetic variation was investigated using DNA sequencing of the C. pecorum ompA and KoRV-A env genes. Key results C. pecorum and KoRV-A were detected in 61% and 27% of wild South Gippsland individuals tested, respectively. KoRV-A infection tended to be higher in shelter koalas compared with wild koalas. In contrast with other Victorian koala populations sampled, greater pathogen diversity was present in South Gippsland. Conclusions In the South Gippsland koala population, C. pecorum is widespread and common whereas KoRV appears less prevalent than previously thought. Further work exploring the dynamics of these pathogens in South Gippsland koalas is warranted and may help inform future conservation strategies for this important population. Implications Non-invasive genetic sampling from scats is a powerful method for obtaining data regarding pathogen prevalence and diversity in wildlife. The use of non-invasive methods for the study of pathogens may help fill research gaps in a way that would be difficult or expensive to achieve using traditional methods.


Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1094 ◽  
Author(s):  
Edward Narayan ◽  
Annabella Perakis ◽  
Will Meikle

Non-invasive techniques can be applied for monitoring the physiology and behaviour of wildlife in Zoos to improve management and welfare. Thermal imaging technology has been used as a non-invasive technique to measure the body temperature of various domesticated and wildlife species. In this study, we evaluated the application of thermal imaging to measure the body temperature of koalas (Phascolarctos cinereus) in a Zoo environment. The aim of the study was to determine the body feature most suitable for recording a koala’s body temperature (using coefficient of variation scores). We used a FLIR530TM IR thermal imaging camera to take images of each individual koala across three days in autumn 2018 at the Wildlife Sydney Zoo, Australia. Our results demonstrated that koalas had more than one reliable body feature for recording body temperature using the thermal imaging tool—the most reliable features were eyes and abdomen. This study provides first reported application of thermal imaging on an Australian native species in a Zoo and demonstrates its potential applicability as a humane/non-invasive technique for assessing the body temperature as an index of stress.



2020 ◽  
Vol 44 (5) ◽  
pp. 583-605 ◽  
Author(s):  
Bonnie L Quigley ◽  
Peter Timms

ABSTRACT The iconic Australian marsupial, the koala (Phascolarctos cinereus), has suffered dramatic population declines as a result of habitat loss and fragmentation, disease, vehicle collision mortality, dog attacks, bushfires and climate change. In 2012, koalas were officially declared vulnerable by the Australian government and listed as a threatened species. In response, research into diseases affecting koalas has expanded rapidly. The two major pathogens affecting koalas are Chlamydia pecorum, leading to chlamydial disease and koala retrovirus (KoRV). In the last eight years, these pathogens and their diseases have received focused study regarding their sources, genetics, prevalence, disease presentation and transmission. This has led to vast improvements in pathogen detection and treatment, including the ongoing development of vaccines for each as a management and control strategy. This review will summarize and highlight the important advances made in understanding and combating C. pecorum and KoRV in koalas, since they were declared a threatened species. With complementary advances having also been made from the koala genome sequence and in our understanding of the koala immune system, we are primed to make a significant positive impact on koala health into the future.



2003 ◽  
Vol 6 (1) ◽  
pp. 83-92 ◽  
Author(s):  
Nathaniel Valière ◽  
Luca Fumagalli ◽  
Ludovic Gielly ◽  
Christian Miquel ◽  
Benoît Lequette ◽  
...  


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1477
Author(s):  
Tamsyn Stephenson ◽  
Natasha Speight ◽  
Wai Yee Low ◽  
Lucy Woolford ◽  
Rick Tearle ◽  
...  

Koala retrovirus, a recent discovery in Australian koalas, is endogenised in 100% of northern koalas but has lower prevalence in southern populations, with lower proviral and viral loads, and an undetermined level of endogenisation. KoRV has been associated with lymphoid neoplasia, e.g., lymphoma. Recent studies have revealed high complexity in southern koala retroviral infections, with a need to clarify what constitutes positive and negative cases. This study aimed to define KoRV infection status in Mount Lofty Ranges koalas in South Australia using RNA-seq and proviral analysis (n = 216). The basis for positivity of KoRV was deemed the presence of central regions of the KoRV genome (gag 2, pol, env 1, and env 2) and based on this, 41% (89/216) koalas were positive, 57% (124/216) negative, and 2% inconclusive. These genes showed higher expression in lymph node tissue from KoRV positive koalas with lymphoma compared with other KoRV positive koalas, which showed lower, fragmented expression. Terminal regions (LTRs, partial gag, and partial env) were present in SA koalas regardless of KoRV status, with almost all (99.5%, 215/216) koalas positive for gag 1 by proviral PCR. Further investigation is needed to understand the differences in KoRV infection in southern koala populations.



Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 570
Author(s):  
Miriam A. Zemanova ◽  
Daniel Ramp

Dispersal is a key process for population persistence, particularly in fragmented landscapes. Connectivity between habitat fragments can be easily estimated by quantifying gene flow among subpopulations. However, the focus in ecological research has been on endangered species, typically excluding species that are not of current conservation concern. Consequently, our current understanding of the behaviour and persistence of many species is incomplete. A case in point is the eastern grey kangaroo (Macropus giganteus), an Australian herbivore that is subjected to considerable harvesting and population control efforts. In this study, we used non-invasive genetic sampling of eastern grey kangaroos within and outside of the Mourachan Conservation Property to assess functional connectivity. In total, we genotyped 232 samples collected from 17 locations at 20 microsatellite loci. The clustering algorithm indicated the presence of two clusters, with some overlap between the groups within and outside of the reserve. This genetic assessment should be repeated in 10–15 years to observe changes in population structure and gene flow over time, monitoring the potential impact of the planned exclusion fencing around the reserve.



2013 ◽  
Vol 21 (3) ◽  
pp. 215-222 ◽  
Author(s):  
L Lieber ◽  
S Berrow ◽  
E Johnston ◽  
G Hall ◽  
J Hall ◽  
...  


Author(s):  
Tatia Kuljanishvili ◽  
Levan Mumladze ◽  
Bella Japoshvili ◽  
Namig Mustafayev ◽  
Shaig Ibrahimov ◽  
...  

The South Caucasus (SC) region is recognized for its high biological diversity and various endemic animal taxa. The area has experienced many fish introductions over the years, but the overall information about non-native fishes in the three SC countries, Armenia, Azerbaijan, and Georgia did not exist. Although these three countries belong to the Kura River drainage, Caspian Sea basin (only the western half of Georgia drains into the Black Sea), the legislative framework for each country regarding introduction of non-native fish species and their treatment is different and poorly developed. The goal of the present study was to make an initial inventory of non-native fish species in the three SC countries, and summarize the existing knowledge as a basis for future risk assessment models and formulation of regional management policies. Here, we present a unified list of 27 non-native species recorded in the wild in Armenia, Azerbaijan, and Georgia. Among these 27 species, eight were translocated from the Black Sea basin to the Caspian Sea basin. Out of these 27 non-native fishes, 15 species have become established (three of them being considered invasive) and six fish species could not survive in the wild.



1998 ◽  
Vol 13 (1) ◽  
pp. 26-27 ◽  
Author(s):  
Pierre Taberlet ◽  
Lisette P Waits


2006 ◽  
Vol 8 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Nathaniel Valière ◽  
Christophe Bonenfant ◽  
Carole Toïgo ◽  
Gordon Luikart ◽  
Jean-Michel Gaillard ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document