scholarly journals TET1 interacts directly with NANOG via independent regions containing hydrophobic and aromatic residues

2020 ◽  
Author(s):  
Raphaël Pantier ◽  
Nicholas Mullin ◽  
Elisa Hall-Ponsele ◽  
Ian Chambers

AbstractThe DNA demethylase TET1 is highly expressed in embryonic stem cells. Knockout experiments indicate that TET1 is important for lineage commitment, and paradoxically, also for reprogramming to naïve pluripotency. TET1 binds to promoters through a CXXC domain which recognises unmethylated CpG dinucleotides. TET1 also binds to enhancers, presumably via interactions with partner proteins. The transcription factor NANOG interacts with TET1 and is predominantly localised at enhancers in ESCs. Therefore, NANOG may contribute to TET1 biological activity in pluripotent cells. However, the regions of TET1 involved in protein-protein interactions are mostly unknown. Here, we characterise the physical interaction between TET1 and NANOG using embryonic stem cells and bacterial expression systems. TET1 and NANOG interact through multiple binding sites that act independently. Critically, mutating conserved hydrophobic and aromatic residues within TET1 and NANOG abolishes the interaction. Comparative ChIP-seq analysis identifies genomic loci bound by both TET1 and NANOG, that correspond predominantly to pluripotency enhancers. Importantly, around half of NANOG transcriptional target genes are associated with TET1-NANOG co-bound sites. These results indicate a mechanism by which TET1 protein is targeted to specific sites of action at enhancers by direct interaction with a transcription factor.HighlightsNANOG and TET1 have regulatory roles in maintaining and reprogramming pluripotencyTET1 and NANOG interact via multiple independent binding regionsTET1 and NANOG interactions are mediated by aromatic and hydrophobic residuesTET1 residues that bind NANOG are highly conserved in mammalsCo-localisation of TET1 and NANOG on chromatin is enriched at NANOG target genes

2019 ◽  
Author(s):  
Matteo Perino ◽  
Guido van Mierlo ◽  
Sandra M.T. Wardle ◽  
Hendrik Marks ◽  
Gert Jan C. Veenstra

AbstractPolycomb Repressive Complex 2 (PRC2) plays an essential role in development by catalysing trimethylation of histone H3 lysine 27 (H3K27me3), resulting in gene repression. PRC2 consists of two sub-complexes, PRC2.1 and PRC2.2, in which the PRC2 core associates with distinct ancillary subunits such as MTF2 and JARID2, respectively. Both MTF2, present in PRC2.1, and JARID2, present in PRC2.2, play a role in core PRC2 recruitment to target genes in mouse embryonic stem cells (mESCs). However, it remains unclear how these distinct sub-complexes cooperate to establish Polycomb domains. Here, we combine a range of Polycomb mutant mESCs with chemical inhibition of PRC2 catalytic activity, to systematically dissect their relative contributions to PRC2 binding to target loci. We find that PRC2.1 and PRC2.2 mediate two distinct paths for recruitment, with mutually reinforced binding. Part of the cross-talk between PRC2.1 and PRC2.2 occurs via their catalytic product H3K27me3, which is bound by the PRC2 core-subunit EED, thereby mediating a positive feedback. Strikingly, removal of either JARID2 or H3K27me3 only has a minor effect on PRC2 recruitment, whereas their combined ablation largely attenuates PRC2 recruitment. This strongly suggests an unexpected redundancy between JARID2 and EED-H3K27me3-mediated recruitment of PRC2. Furthermore, we demonstrate that all core PRC2 recruitment occurs through the combined action of MTF2-mediated recruitment of PRC2.1 to DNA and PRC1-mediated recruitment of JARID2-containing PRC2.2. Both axes of binding are supported by EED-H3K27me3 positive feedback, but to a different degree. Finally, we provide evidence that PRC1 and PRC2 mutually reinforce reciprocal binding. Together, these data disentangle the interdependent and cooperative interactions between Polycomb complexes that are important to establish Polycomb repression at target sites.HighlightsSystematic analysis of Polycomb complex binding to target loci in mESCs using null mutations and chemical inhibition.PRC1, PRC2.1 and PRC2.2 are all mutually dependent for binding to chromatin, mediated in part by H3K27me3.PRC2.1 recruitment is dependent on MTF2PRC2.2 recruitment by JARID2 is dependent on PRC1 and largely redundant with recruitment by H3K27me3


1994 ◽  
Vol 14 (5) ◽  
pp. 3108-3114
Author(s):  
M H Baron ◽  
S M Farrington

The zinc finger transcription factor GATA-1 is a major regulator of gene expression in erythroid, megakaryocyte, and mast cell lineages. GATA-1 binds to WGATAR consensus motifs in the regulatory regions of virtually all erythroid cell-specific genes. Analyses with cultured cells and cell-free systems have provided strong evidence that GATA-1 is involved in control of globin gene expression during erythroid differentiation. Targeted mutagenesis of the GATA-1 gene in embryonic stem cells has demonstrated its requirement in normal erythroid development. Efficient rescue of the defect requires an intact GATA element in the distal promoter, suggesting autoregulatory control of GATA-1 transcription. To examine whether GATA-1 expression involves additional regulatory factors or is maintained entirely by an autoregulatory loop, we have used a transient heterokaryon system to test the ability of erythroid factors to activate the GATA-1 gene in nonerythroid nuclei. We show here that proerythroblasts and mature erythroid cells contain a diffusible activity (TAG) capable of transcriptional activation of GATA-1 and that this activity decreases during the terminal differentiation of erythroid cells. Nuclei from GATA-1- mutant embryonic stem cells can still be reprogrammed to express their globin genes in erythroid heterokaryons, indicating that de novo induction of GATA-1 is not required for globin gene activation following cell fusion.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Kiwon Ban ◽  
Brian Wile ◽  
Kyu-Won Cho ◽  
Sangsung Kim ◽  
Jason Singerd ◽  
...  

Background: Ventricular cardiomyocytes (CMs) are an ideal cell type for cardiac cell therapy since they are the main cells generating cardiac forces. However, isolating them from differentiating pluripotent stem cells (PSCs) has been challenging due to the lack of specific surface markers. Here we show that ventricular CMs can be purified from differentiating mouse embryonic stem cells (mESCs) using molecular beacons (MBs) targeting specific intracellular mRNAs. MBs are dual-labeled oligonucleotide hairpin probes that emit a fluorescence signal when hybridized to target mRNAs, allowing isolation of specific target cells by fluorescence activated cell sorting (FACS) with high specificity and sensitivity. Methods and Results: We generated three different MBs (IRX4-1, -2, -3) designed to target specific regions of mRNAs of iroquois homeobox protein 4 (Irx4), a specific transcription factor for ventricular CMs. Among three IRX4 MBs, IRX4-2 MB demonstrated the highest sensitivity and specificity, thus IRX4-2 MB was selected to purify mESC-derived ventricular CMs. Subsequently, IRX4-2 MBs were delivered into cardiomyogenically differentiating mESC cultures and cells showing strong signals from IRX4-2 MBs were FACS-sorted. Flow cytometry demonstrated that 92~97% of IRX4-2 MB-positive cells expressed a marker for ventricular CMs myosin light chain 2 ventricular isoform (Myl2) as well as cardiac troponin 2 (Tnnt2). Importantly, higher than 98% of IRX4-2 MB-positive cells displayed ventricular CM-like action potentials during electrophysiological analyses. These IRX4-2 MB-based purified ventricular CMs continuously maintained their CM characteristics verified by synchronous beating, Ca2+ transient, and expression of ventricular CM-specific proteins. Conclusions: We established a novel MB-based cell sorting system targeting a transcription factor that is specific for ventricular CM to generate homogeneous and functional ventricular CMs. This is the first report to show the feasibility of isolating pure ventricular CMs without modifying host genes, and this platform will be useful for therapeutic applications, disease modeling, and drug discovery.


Gene ◽  
2016 ◽  
Vol 578 (2) ◽  
pp. 194-204 ◽  
Author(s):  
Maryam Pashaiasl ◽  
Khodadad Khodadadi ◽  
Amir Hossein Kayvanjoo ◽  
Roghiyeh Pashaei-asl ◽  
Esmaeil Ebrahimie ◽  
...  

Stem Cells ◽  
2014 ◽  
Vol 32 (3) ◽  
pp. 609-622 ◽  
Author(s):  
Jamie Mong ◽  
Lia Panman ◽  
Zhanna Alekseenko ◽  
Nigel Kee ◽  
Lawrence W. Stanton ◽  
...  

2020 ◽  
Vol 21 (23) ◽  
pp. 9052
Author(s):  
Indrek Teino ◽  
Antti Matvere ◽  
Martin Pook ◽  
Inge Varik ◽  
Laura Pajusaar ◽  
...  

Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which mediates the effects of a variety of environmental stimuli in multiple tissues. Recent advances in AHR biology have underlined its importance in cells with high developmental potency, including pluripotent stem cells. Nonetheless, there is little data on AHR expression and its role during the initial stages of stem cell differentiation. The purpose of this study was to investigate the temporal pattern of AHR expression during directed differentiation of human embryonic stem cells (hESC) into neural progenitor, early mesoderm and definitive endoderm cells. Additionally, we investigated the effect of the AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the gene expression profile in hESCs and differentiated cells by RNA-seq, accompanied by identification of AHR binding sites by ChIP-seq and epigenetic landscape analysis by ATAC-seq. We showed that AHR is differentially regulated in distinct lineages. We provided evidence that TCDD alters gene expression patterns in hESCs and during early differentiation. Additionally, we identified novel potential AHR target genes, which expand our understanding on the role of this protein in different cell types.


Cell Research ◽  
2008 ◽  
Vol 18 (S1) ◽  
pp. S109-S109 ◽  
Author(s):  
Qing Le Liang ◽  
Xiao Xun Wang ◽  
Xiao Fei Yan ◽  
Li Jun Yang ◽  
Dong Qi Tang ◽  
...  

2009 ◽  
Vol 92 (3) ◽  
pp. S172
Author(s):  
R.M. Anchan ◽  
S.A. Lachke ◽  
B. Gerami-Naini ◽  
K.E. Naber ◽  
J. Eaton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document