scholarly journals Synergy between Wsp1 and Dip1 may initiate assembly of endocytic actin networks

2020 ◽  
Author(s):  
Connor J. Balzer ◽  
Michael L. James ◽  
Luke A. Helgeson ◽  
Vladimir Sirotkin ◽  
Brad J. Nolen

AbstractThe actin filament nucleator Arp2/3 complex is activated at cortical sites in S. pombe to assemble branched actin networks that drive endocytosis. Arp2/3 complex activators Wsp1 and Dip1 are required for proper actin assembly at endocytic sites, but how they coordinately control Arp2/3-mediated actin assembly is unknown. Alone, Dip1 activates Arp2/3 complex without preexisting actin filaments to nucleate “seed” filaments that activate Wsp1-bound Arp2/3 complex, thereby initiating branched actin network assembly. In contrast, because Wsp1 requires pre-existing filaments to activate, it has been assumed to function exclusively in propagating actin networks by stimulating branching from pre-existing filaments. Here we show that Wsp1 is important not only for propagation, but also for initiation of endocytic actin networks. Using single molecule TIRF microscopy we show that Wsp1 synergizes with Dip1 to co-activate Arp2/3 complex. Synergistic coactivation does not require pre-existing actin filaments, explaining how Wsp1 contributes to actin network initiation in cells.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Connor J Balzer ◽  
Michael L James ◽  
Heidy Y Narvaez-Ortiz ◽  
Luke A Helgeson ◽  
Vladimir Sirotkin ◽  
...  

The actin filament nucleator Arp2/3 complex is activated at cortical sites in Schizosaccharomyces pombe to assemble branched actin networks that drive endocytosis. Arp2/3 complex activators Wsp1 and Dip1 are required for proper actin assembly at endocytic sites, but how they coordinately control Arp2/3-mediated actin assembly is unknown. Alone, Dip1 activates Arp2/3 complex without preexisting actin filaments to nucleate ‘seed’ filaments that activate Wsp1-bound Arp2/3 complex, thereby initiating branched actin network assembly. In contrast, because Wsp1 requires preexisting filaments to activate, it has been assumed to function exclusively in propagating actin networks by stimulating branching from preexisting filaments. Here we show that Wsp1 is important not only for propagation but also for initiation of endocytic actin networks. Using single molecule total internal reflection fluorescence microscopy we show that Wsp1 synergizes with Dip1 to co-activate Arp2/3 complex. Synergistic co-activation does not require preexisting actin filaments, explaining how Wsp1 contributes to actin network initiation in cells.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Shashank Shekhar ◽  
Johnson Chung ◽  
Jane Kondev ◽  
Jeff Gelles ◽  
Bruce L. Goode

AbstractCellular actin networks can be rapidly disassembled and remodeled in a few seconds, yet in vitro actin filaments depolymerize slowly over minutes. The cellular mechanisms enabling actin to depolymerize this fast have so far remained obscure. Using microfluidics-assisted TIRF, we show that Cyclase-associated protein (CAP) and Cofilin synergize to processively depolymerize actin filament pointed ends at a rate 330-fold faster than spontaneous depolymerization. Single molecule imaging further reveals that hexameric CAP molecules interact with the pointed ends of Cofilin-decorated filaments for several seconds at a time, removing approximately 100 actin subunits per binding event. These findings establish a paradigm, in which a filament end-binding protein and a side-binding protein work in concert to control actin dynamics, and help explain how rapid actin network depolymerization is achieved in cells.


2020 ◽  
Vol 220 (1) ◽  
Author(s):  
Shashank Shekhar ◽  
Gregory J. Hoeprich ◽  
Jeff Gelles ◽  
Bruce L. Goode

Cellular actin networks grow by ATP-actin addition at filament barbed ends and have long been presumed to depolymerize at their pointed ends, primarily after filaments undergo “aging” (ATP hydrolysis and Pi release). The cytosol contains high levels of actin monomers, which favors assembly over disassembly, and barbed ends are enriched in ADP-Pi actin. For these reasons, the potential for a barbed end depolymerization mechanism in cells has received little attention. Here, using microfluidics-assisted TIRF microscopy, we show that mouse twinfilin, a member of the ADF-homology family, induces depolymerization of ADP-Pi barbed ends even under assembly-promoting conditions. Indeed, we observe in single reactions containing micromolar concentrations of actin monomers the simultaneous rapid elongation of formin-bound barbed ends and twinfilin-induced depolymerization of free barbed ends. The data show that twinfilin catalyzes dissociation of subunits from ADP-Pi barbed ends and thereby bypasses filament aging prerequisites to disassemble newly polymerized actin filaments.


2020 ◽  
Author(s):  
Chiara Galloni ◽  
Davide Carra ◽  
Jasmine V. G. Abella ◽  
Svend Kjær ◽  
Pavithra Singaravelu ◽  
...  

AbstractThe Arp2/3 complex (Arp2, Arp3 and ARPC1-5) is essential to generate branched actin filament networks for many cellular processes. Human Arp3, ARPC1 and ARPC5 exist as two isoforms but the functional properties of Arp2/3 iso-complexes is largely unexplored. Here we show that Arp3B, but not Arp3 is subject to regulation by the methionine monooxygenase MICAL2, which is recruited to branched actin networks by coronin-1C. Although Arp3 and Arp3B iso-complexes promote actin assembly equally efficiently in vitro, they have different cellular properties. Arp3B turns over significantly faster than Arp3 within the network and upon its depletion actin turnover decreases. Substitution of Arp3B Met293 by Thr, the corresponding residue in Arp3 increases actin network stability, and conversely, replacing Arp3 Thr293 with Gln to mimic Met oxidation promotes network disassembly. Thus, MICAL2 regulates a subset of Arp2/3 complexes to control branched actin network disassembly.


2001 ◽  
Vol 153 (3) ◽  
pp. 627-634 ◽  
Author(s):  
Bruce L. Goode ◽  
Avital A. Rodal ◽  
Georjana Barnes ◽  
David G. Drubin

The actin-related protein (Arp) 2/3 complex plays a central role in assembly of actin networks. Because distinct actin-based structures mediate diverse processes, many proteins are likely to make spatially and temporally regulated interactions with the Arp2/3 complex. We have isolated a new activator, Abp1p, which associates tightly with the yeast Arp2/3 complex. Abp1p contains two acidic sequences (DDW) similar to those found in SCAR/WASp proteins. We demonstrate that mutation of these sequences abolishes Arp2/3 complex activation in vitro. Genetic studies indicate that this activity is important for Abp1p functions in vivo. In contrast to SCAR/WASp proteins, Abp1p binds specifically to actin filaments, not monomers. Actin filament binding is mediated by the ADF/cofilin homology (ADF-H) domain of Abp1p and is required for Arp2/3 complex activation in vitro. We demonstrate that Abp1p recruits Arp2/3 complex to the sides of filaments, suggesting a novel mechanism of activation. Studies in yeast and mammalian cells indicate that Abp1p is involved functionally in endocytosis. Based on these results, we speculate that Abp1p may link Arp2/3-mediated actin assembly to a specific step in endocytosis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anan Chen ◽  
Luisa Ulloa Severino ◽  
Thomas C. Panagiotou ◽  
Trevor F. Moraes ◽  
Darren A. Yuen ◽  
...  

AbstractDuring cytokinesis, the actin cytoskeleton is partitioned into two spatially distinct actin isoform specific networks: a β-actin network that generates the equatorial contractile ring, and a γ-actin network that localizes to the cell cortex. Here we demonstrate that the opposing regulation of the β- and γ-actin networks is required for successful cytokinesis. While activation of the formin DIAPH3 at the cytokinetic furrow underlies β-actin filament production, we show that the γ-actin network is specifically depleted at the cell poles through the localized deactivation of the formin DIAPH1. During anaphase, CLIP170 is delivered by astral microtubules and displaces IQGAP1 from DIAPH1, leading to formin autoinhibition, a decrease in cortical stiffness and localized membrane blebbing. The contemporaneous production of a β-actin contractile ring at the cell equator and loss of γ-actin from the poles is required to generate a stable cytokinetic furrow and for the completion of cell division.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Luke A Helgeson ◽  
Brad J Nolen

Nucleation promoting factors (NPFs) initiate branched actin network assembly by activating Arp2/3 complex, a branched actin filament nucleator. Cellular actin networks contain multiple NPFs, but how they coordinately regulate Arp2/3 complex is unclear. Cortactin is an NPF that activates Arp2/3 complex weakly on its own, but with WASP/N-WASP, another class of NPFs, potently activates. We dissect the mechanism of synergy and propose a model in which cortactin displaces N-WASP from nascent branches as a prerequisite for nucleation. Single-molecule imaging revealed that unlike WASP/N-WASP, cortactin remains bound to junctions during nucleation, and specifically targets junctions with a ∼160-fold increased on rate over filament sides. N-WASP must be dimerized for potent synergy, and targeted mutations indicate release of dimeric N-WASP from nascent branches limits nucleation. Mathematical modeling shows cortactin-mediated displacement but not N-WASP recycling or filament recruitment models can explain synergy. Our results provide a molecular basis for coordinate Arp2/3 complex regulation.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Johanna Funk ◽  
Felipe Merino ◽  
Larisa Venkova ◽  
Lina Heydenreich ◽  
Jan Kierfeld ◽  
...  

The actin cytoskeleton drives many essential biological processes, from cell morphogenesis to motility. Assembly of functional actin networks requires control over the speed at which actin filaments grow. How this can be achieved at the high and variable levels of soluble actin subunits found in cells is unclear. Here we reconstitute assembly of mammalian, non-muscle actin filaments from physiological concentrations of profilin-actin. We discover that under these conditions, filament growth is limited by profilin dissociating from the filament end and the speed of elongation becomes insensitive to the concentration of soluble subunits. Profilin release can be directly promoted by formin actin polymerases even at saturating profilin-actin concentrations. We demonstrate that mammalian cells indeed operate at the limit to actin filament growth imposed by profilin and formins. Our results reveal how synergy between profilin and formins generates robust filament growth rates that are resilient to changes in the soluble subunit concentration.


2021 ◽  
Author(s):  
Johanna Funk ◽  
Felipe Merino ◽  
Matthias Schaks ◽  
Klemens Rottner ◽  
Stefan Raunser ◽  
...  

Heterodimeric capping protein (CP/CapZ) is an essential factor for the assembly of branched actin networks, which push against cellular membranes to drive a large variety of cellular processes. Aside from terminating filament growth, CP stimulates the nucleation of actin filaments by the Arp2/3 complex in branched actin networks through an unclear mechanism. Here, we report the structure of capped actin filament barbed ends, which reveals how CP not only prevents filament elongation, but also controls access to both terminal filament subunits. In addition to its primary binding site that blocks the penultimate subunit, we find that the CP sterically occludes the central interaction site of the terminal actin protomer through one of its C-terminal tentacle extensions. Deletion of this β tentacle only modestly impairs capping. However in the context of a growing branched actin network, its removal potently inhibits nucleation promoting factors (NPFs) by tethering them to capped filament ends. End tethering of NPFs prevents their loading with actin monomers required for activation of the Arp2/3 complex and thus strongly inhibits branched network assembly both in cells and reconstituted motility assays. Our results mechanistically explain how CP couples two opposed processes -capping and nucleation- in branched actin network assembly.


2019 ◽  
Author(s):  
Johanna Funk ◽  
Felipe Merino ◽  
Larisa Venkova ◽  
Pablo Vargas ◽  
Stefan Raunser ◽  
...  

AbstractThe actin cytoskeleton drives many essential biological processes, from cell morphogenesis to motility. Assembly of functional actin networks requires control over the speed at which actin filaments grow. How this can be achieved at the high and variable levels of soluble actin subunits found in cells is unclear. Here we reconstitute assembly of mammalian, non-muscle actin filaments from physiological concentrations of profilin-actin. We discover that under these conditions, filament growth is limited by profilin dissociating from the filament end and the speed of elongation becomes insensitive to the concentration of soluble subunits. Profilin release can be directly promoted by formin actin polymerases even at saturating profilin-actin concentrations. We demonstrate that mammalian cells indeed operate at the limit to actin filament growth imposed by profilin and formins. Our results reveal how synergy between profilin and formins generates robust filament growth rates that are resilient to changes in the soluble subunit concentration.


Sign in / Sign up

Export Citation Format

Share Document