scholarly journals Evaluation of efficiency and sensitivity of 1D and 2D sample pooling strategies for diagnostic screening purposes

Author(s):  
Jasper Verwilt ◽  
Pieter Mestdagh ◽  
Jo Vandesompele

As SARS-CoV-2 continues to spread around the world while the pandemic lasts, testing facilities are forced to massively increment their testing capacities to handle the increasing number of samples. While sample pooling methods have been proposed or are effectively implemented in some labs, no systematic and large-scale simulations have been performed using real-life quantitative data from testing facilities. Here, we use anonymous data from 1632 positive cases to simulate and compare 1D and 2D pooling strategies. We show that the choice of pooling method and pool size is an intricate decision with a prevalence-dependent efficiency-sensitivity trade-off.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Giacomo Cacciapaglia ◽  
Francesco Sannino

Abstract One of the biggest threats to humanity are pandemics. In our global society they can rage around the world with an immense toll in terms of human, economic and social impact. Forecasting the spreading of a pandemic is, therefore, paramount in helping governments to enforce a number of social and economic measures, apt at curbing the pandemic and dealing with its aftermath. We demonstrate that the epidemic renormalisation group approach to pandemics provides an effective and simple way to investigate the dynamics of disease transmission and spreading across different regions of the world. The framework also allows for reliable projections on the impact of travel limitations and social distancing measures on global epidemic spread. We test and calibrate it on reported COVID-19 cases while unveiling the mechanism that governs the delay in the relative peaks of newly infected cases among different regions of the globe. We discover that social distancing measures are more effective than travel limitations across borders in delaying the epidemic peak. We further provide the link to compartmental models such as the time-honoured SIR-like models. We also show how to generalise the framework to account for the interactions across several regions of the world, replacing or complementing large scale simulations.


Author(s):  
Yichuan Gan ◽  
Lingyan Du ◽  
Oluwasijibomi Damola Faleti ◽  
Jing Huang ◽  
Gang Xiao ◽  
...  

SummaryBackgroundIdentification of less costly and accurate methods for monitoring novel coronavirus disease 2019 (CoViD-19) transmission has attracted much interest in recent times. Here, we evaluated a pooling method to determine if this could improve screening efficiency and reduce costs while maintaining accuracy in Guangzhou, China.MethodsWe evaluated 8097 throat swap samples collected from individuals who came for a health check-up or fever clinic in The Third Affiliated Hospital, Southern Medical University between March 4, 2020 and April 26, 2020. Samples were screened for CoViD-19 infection using the WHO-approved quantitative reverse transcription PCR (RT-qPCR) primers. The positive samples were classified into two groups (high or low) based on viral load in accordance with the CT value of COVID-19 RT-qPCR results. Each positive RNA samples were mixed with COVID-19 negative RNA or ddH2O to form RNA pools.FindingsSamples with high viral load could be detected in pool negative samples (up to 1/1000 dilution fold). In contrast, the detection of RNA sample from positive patients with low viral load in a pool was difficult and not repeatable.InterpretationOur results show that the COVID-19 viral load significantly influences in pooling efficacy. COVID-19 has distinct viral load profile which depends on the timeline of infection. Thus, application of pooling for infection surveillance may lead to false negatives and hamper infection control efforts.FundingNational Natural Science Foundation of China; Hong Kong Scholars Program, Natural Science Foundation of Guangdong Province; Science and Technology Program of Guangzhou, China.Research in contextEvidence before this studySince it emergence in late 2019, CoViD-19 has dramatically increased the burden healthcare system worldwide. A research letter titled “Sample Pooling as a Strategy to Detect Community Transmission of SARS-CoV-2” which was recently published in JAMA journal proposed that sample pooling could be used for SARS-COV-2 community surveillance. Currently, the need for large-scale testing increases the number of 2019-nCOV nucleic acid analysis required for proper policy-making especially as work and normal school resumes. As far as we know, there are many countries and regions in the world, who are beginning to try this strategy for nucleic acid screening of SARS-CoV-2.Added value of this studyWe carried out a study using pooled samples formed from SARS-COV-2 negative samples and positive samples with high or low viral and assessed detection rate for the positive samples. We found that positive sample with high viral load could be detected in pools in a wide range of dilution folds (ranging from1/2 to 1/50). On the contrary, the sample with low viral load could only be detected in RNA “pools” at very low dilution ratio, and the repeatability was unsatisfactory. Our results show the application of the “pooling” strategy for large-scale community surveillance requires careful consideration and depends on the viral load of the positive samples.Implications of all the available evidenceAlthough the number of newly diagnosed cases has been reducing in some parts of the world, the possibility of a second wave of infection has made quick and efficient data gathering essential for policy-making, isolation and treatment of patients. Fast and efficient nucleic acid detection methods are encouraged, but sample pooling as a strategy of SARS-COV-2 nucleic acid screening increased the false-negative rate, especially those with asymptomatic infections have lower viral load. Therefore, the application of the “pooling” strategy for large-scale community surveillance requires careful consideration by policy makers.


Author(s):  
Ana Paula Christoff ◽  
Giuliano Netto Flores Cruz ◽  
Aline Fernanda Rodrigues Sereia ◽  
Dellyana Rodrigues Boberg ◽  
Daniela Carolina de Bastiani ◽  
...  

Pool testing has been proposed as an alternative for large-scale SARS-CoV-2 screening. However, dilution factors proportional to the number of pooled samples have been a source of major concern regarding its diagnostic performance. Further, sample pooling can lead to increased laboratory workload and operational complexity. Therefore, pooling strategies that minimize sample dilution, loss of sensitivity, and laboratory overload are needed to allow reliable and large-scale screenings of SARS-CoV-2. Here, we describe a pooling procedure in which nasopharyngeal swabs are pooled together at the time of sample collection (swab pooling), decreasing laboratory manipulation and minimizing dilution of the viral RNA present in the samples. Paired analysis of pooled and individual samples from 613 patients revealed 94 positive individual tests. Having individual testing as a reference, no false-positives or false-negatives were observed for swab pooling. A Bayesian model estimated a sensitivity of 99% (Cr.I. 96.9% to 100%) and a specificity of 99.8% (Cr.I. 99.4% to 100%) for the swab pooling procedure. Data from additional 18,922 patients screened with swab pooling were included for further quantitative analysis. Mean Cq differences between individual and corresponding pool samples ranged from 0.1 Cq (Cr.I. -0.98 to 1.17) to 2.09 Cq (Cr.I. 1.24 to 2.94). Overall, 19,535 asymptomatic and presymptomatic patients were screened using 4,400 RT-qPCR assays, resulting in 246 positive patients (positivity rate 1.26%). This corresponds to an increase of 4.4 times in laboratory capacity and a reduction of 77% in required tests. Finally, these data demonstrate that swab pooling can significantly minimize sample dilution and sensitivity issues commonly seen in its traditional counterpart. Therefore, swab pooling represents a major alternative for reliable and large-scale screening of SARS-CoV-2 in low prevalence populations.


Author(s):  
Rafik Fainti ◽  
Antonia Nasiakou ◽  
Eleftherios Tsoukalas ◽  
Manolis Vavalis

The aim of this paper is twofold. Firstly, to briefly present the overall objectives and the expected outcome of an on-going effort concerning the design the implementation and the analysis of next generation intelligent energy systems based on anticipatory control and a set of ICT emerging technologies and innovations. Secondly, to describe an early proof-of-concept implementation and the preliminary experimentation of a simulation platform focused on holistic detailed studies of electric energy markets. The proposed platform allows us to elucidate issues related to the open and smart participation of producers and consumers on large-scale energy e-markets. Based on an existing simulation system we present the required theoretical studies, the enabling technologies, and the practical tools that contribute to the development of such a platform capable of truly large scale simulations that cover real life scenarios and stress most components and modules of next generation smart energy markets. Elements of game theory are utilized to solve the optimization problem related to the maximization of the social welfare of producers and consumers. Selected simulation results associated with the basic required characteristics of our platform are presented.


Author(s):  
Haran Shani-Narkiss ◽  
Omri David Gilday ◽  
Nadav Yayon ◽  
Itamar Daniel Landau

AbstractIn the global effort to combat the COVID-19 pandemic, governments and public health agencies are striving to rapidly increase the volume and rate of diagnostic testing. The most common form of testing today employs Polymerase Chain Reaction in order to identify the presence of viral RNA in individual patient samples one by one. This process has become one of the most significant bottlenecks to increased testing, especially due to reported shortages in the chemical reagents needed in the PCR reaction.Recent technical advances have enabled High-Throughput PCR, in which multiple samples are pooled into one tube. Such methods can be highly efficient, saving large amounts of time and reagents. However, their efficiency is highly dependent on the frequency of positive samples, which varies significantly across regions and even within regions as testing criterion and conditions change.Here, we present two possible optimized pooling strategies for diagnostic SARS-CoV-2 testing on large scales, both addressing dynamic conditions. In the first, we employ a simple information-theoretic heuristic to derive a highly efficient re-pooling protocol: an estimate of the target frequency determines the initial pool size, and any subsequent pools found positive are re-pooled at half-size and tested again. In the range of very rare target (<0.05), this approach can reduce the number of necessary tests dramatically, for example, achieving a reduction by a factor of 50 for a target frequency of 0.001. The second method is a simpler approach of optimized one-time pooling followed by individual tests on positive pools. We show that this approach is just as efficient for moderate target-product frequencies (0.05<0.2), for example, achieving a two-fold in the number of when the frequency of positive samples is 0.07.These strategies require little investment, and they offer a significant reduction in the amount of materials, equipment and time needed to test large numbers of samples. We show that both these pooling strategies are roughly comparable to the absolute upper-bound efficiency given by Shannon’s source coding theorem. We compare our strategies to the naïve way of testing and to alternative matrix-pooling methods. Most importantly, we offer straightforward, practical pooling instructions for laboratories that perform large scale PCR assays to diagnose SARS-CoV-2 viral particles. These two pooling strategies may offer ways to alleviate the bottleneck currently preventing massive expansion of SARS-CoV-2 testing around the world.


2021 ◽  
Author(s):  
Marie Wunsch ◽  
Dominik Aschemeier ◽  
Eva Heger ◽  
Denise Ehrentraut ◽  
Jan Krueger ◽  
...  

Background / Objectives: The global spread of SARS-CoV-2 is a serious public health issue. Large-scale surveillance screenings are crucial but can exceed diagnostic test capacities. We set out to optimize test conditions and implemented high throughput pool testing of respiratory swabs into SARS-CoV-2 diagnostics. Study design: In preparation for pool testing, we determined the optimal pooling strategy and pool size. In addition, we measured the impact of vortexing prior to sample processing, compared pipette- and swab-pooling method as well as the sensitivity of three different PCR assays. Results: Using optimized strategies for pooling, we systematically pooled 55,690 samples in a period of 44 weeks resulting in a reduction of 47,369 PCR reactions. In a low prevalence setting, we defined a preferable pool size of ten in a two-stage hierarchical pool testing strategy. Vortexing of the swabs increased cellular yield by a factor of 2.34, and sampling at or shortly after symptom onset was associated with higher viral loads. By comparing different pooling strategies, pipette-pooling was more efficient compared to swab-pooling. Conclusions: For implementing pooling strategies into high throughput diagnostics, we recommend to apply a pipette-pooling method, using pool sizes of ten samples, performing sensitivity validation of the PCR assays used, and vortexing swabs prior to analyses. Our data shows, that pool testing for SARS-CoV-2 detection is feasible and highly effective in a low prevalence setting.


2022 ◽  
Author(s):  
Abhijit Baidya

Abstract In decision-making model, the techniques of numerical analysis have been widely adopted. It is rare for someone to solve a linear program by hand — except perhaps in a class-room. Large-scale simulations would be all but impossible without the aid of a computer. For many people, numerical techniques have superseded analytic techniques as a tool for solving mathematical problems. This paper proposed Generalized LUExponential Trapezoidal Fuzzy Number and their ranking based on numerical integration. In this ranking method, the values are calculated with left and right spreads at some 𝜶 −level of generalized LU-exponential trapezoidal fuzzy numbers and Weddle‘s rule for numerical integration. To illustrate the proposed methods, a fuzzy four dimensional transportation problem (FDTP) is proposed and solved. This ranking approach is very simple and useful for the real life inequality based decision making problems.


Author(s):  
Jian Tao ◽  
Werner Benger ◽  
Kelin Hu ◽  
Edwin Mathews ◽  
Marcel Ritter ◽  
...  

EDIS ◽  
2019 ◽  
Vol 2019 (5) ◽  
pp. 14
Author(s):  
John Rutledge ◽  
Joy C. Jordan ◽  
Dale W. Pracht

 The 4-H Citizenship Project offers the opportunity to help 4-H members relate all of their 4-H projects and experiences to the world around them. The 4-H Citizenship manuals will serve as a guide for 4-H Citizenship experiences. To be truly meaningful to the real-life needs and interests of your group, the contribution of volunteer leaders is essential. Each person, neighborhood, and community has individual needs that you can help your group identify. This 14-page major revision of Unit IV covers the heritage project. Written by John Rutledge, Joy C. Jordan, and Dale Pracht and published by the UF/IFAS Extension 4-H Youth Development program. https://edis.ifas.ufl.edu/4h019


2019 ◽  
pp. 91-106 ◽  
Author(s):  
Rostislav I. Kapeliushnikov

Using published estimates of inequality for two countries (Russia and USA) the paper demonstrates that inequality measuring still remains in the state of “statistical cacophony”. Under this condition, it seems at least untimely to pass categorical normative judgments and offer radical political advice for governments. Moreover, the mere practice to draw normative conclusions from quantitative data is ethically invalid since ordinary people (non-intellectuals) tend to evaluate wealth and incomes as admissible or inadmissible not on the basis of their size but basing on whether they were obtained under observance or violations of the rules of “fair play”. The paper concludes that a current large-scale ideological campaign of “struggle against inequality” has been unleashed by left-wing intellectuals in order to strengthen even more their discursive power over the public.


Sign in / Sign up

Export Citation Format

Share Document