scholarly journals Protein Surface Printer for Exploring Protein Domains

2020 ◽  
Author(s):  
Yang Li ◽  
Baofu Qiao ◽  
Monica Olvera de la Cruz

AbstractThe surface of proteins is vital in determining protein functions. Herein, a program, Protein Surface Printer(PSP), is built that performs multiple functions in quantifying protein surface domains. Two proteins, PETase and cytochrome P450, are used to validate that the program supports atomistic simulations with different combinations of programs and force fields. A case study is conducted on the structural analysis of the spike proteins of SARS-CoV-2 and SARS-CoV, and the human cell receptor ACE2. Although the surface domains of both spike proteins are highly similar, their receptor binding domains(RBDs) and the O-linked glycan domains are structurally different. Statistically, the outer surface of ACE2 displays less correlation with the RBD of SARS-CoV-2 than that of SARS-CoV. The O-linked glycan domain of SARS-CoV-2 is highly positively charged, which may promote binding to negatively charged human cells. Our program paves the way for an accurate understanding of protein binding for aggregation and ligand recognition.

Author(s):  
George Tetz ◽  
Victor Tetz

Currently, the world is struggling with the coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Prion-like domains are critical for virulence and the development of therapeutic targets; however, the prion-like domains in the SARS-CoV-2 proteome have not been analyzed. In this in silico study, using the PLAAC algorithm, we identified the presence of prion-like domains in SARS-CoV-2 spike protein. Compared with other viruses, a striking difference was observed in the distribution of prion-like domains in the spike, since SARS-CoV-2 was the only coronavirus with a prion-like domain found in the receptor-binding domain of the S1 region of the spike protein. The presence and unique distribution of prion-like domains in the SARS-CoV-2 receptor-binding domains of spike proteins is particularly interesting, since although SARS-CoV-2 and SARS-CoV S share the same host cell receptor, angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 demonstrates a 10- to 20-fold higher affinity for ACE2. Finally, we identified prion-like domains in the α1 helix of the ACE2 receptor that interacts with the viral receptor-binding domain of SARS-CoV-2. Taken together, the present findings indicate that the identified PrDs in the SARS-CoV-2 receptor-binding domain (RBD) and ACE2 region that interacts with RBD have important functional roles in viral adhesion and entry.


2019 ◽  
Vol 116 (39) ◽  
pp. 19274-19281 ◽  
Author(s):  
Baofu Qiao ◽  
Felipe Jiménez-Ángeles ◽  
Trung Dac Nguyen ◽  
Monica Olvera de la Cruz

The conformation of water around proteins is of paramount importance, as it determines protein interactions. Although the average water properties around the surface of proteins have been provided experimentally and computationally, protein surfaces are highly heterogeneous. Therefore, it is crucial to determine the correlations of water to the local distributions of polar and nonpolar protein surface domains to understand functions such as aggregation, mutations, and delivery. By using atomistic simulations, we investigate the orientation and dynamics of water molecules next to 4 types of protein surface domains: negatively charged, positively charged, and charge-neutral polar and nonpolar amino acids. The negatively charged amino acids orient around 98% of the neighboring water dipoles toward the protein surface, and such correlation persists up to around 16 Å from the protein surface. The positively charged amino acids orient around 94% of the nearest water dipoles against the protein surface, and the correlation persists up to around 12 Å. The charge-neutral polar and nonpolar amino acids are also orienting the water neighbors in a quantitatively weaker manner. A similar trend was observed in the residence time of the nearest water neighbors. These findings hold true for 3 technically important enzymes (PETase, cytochrome P450, and organophosphorus hydrolase). Our results demonstrate that the water−amino acid degree of correlation follows the same trend as the amino acid contribution in proteins solubility, namely, the negatively charged amino acids are the most beneficial for protein solubility, then the positively charged amino acids, and finally the charge-neutral amino acids.


Science ◽  
2020 ◽  
pp. eabe3255 ◽  
Author(s):  
Michael Schoof ◽  
Bryan Faust ◽  
Reuben A. Saunders ◽  
Smriti Sangwan ◽  
Veronica Rezelj ◽  
...  

The SARS-CoV-2 virus enters host cells via an interaction between its Spike protein and the host cell receptor angiotensin converting enzyme 2 (ACE2). By screening a yeast surface-displayed library of synthetic nanobody sequences, we developed nanobodies that disrupt the interaction between Spike and ACE2. Cryogenic electron microscopy (cryo-EM) revealed that one nanobody, Nb6, binds Spike in a fully inactive conformation with its receptor binding domains (RBDs) locked into their inaccessible down-state, incapable of binding ACE2. Affinity maturation and structure-guided design of multivalency yielded a trivalent nanobody, mNb6-tri, with femtomolar affinity for Spike and picomolar neutralization of SARS-CoV-2 infection. mNb6-tri retains function after aerosolization, lyophilization, and heat treatment, which enables aerosol-mediated delivery of this potent neutralizer directly to the airway epithelia.


Author(s):  
Anna Macdonald ◽  
Raphael Kerali

Abstract The literature on Lord’s Resistance Army (LRA) returnees in Acholiland, northern Uganda tells us that those who returned from the rebel group are likely to experience stigma and social exclusion. While the term is deployed frequently, ‘stigma’ is not a well-developed concept and most of the evidence we have comes from accounts of returnees themselves. Focusing instead on the ‘stigmatizers’, this article theorizes stigmatization as part of the ‘moral experience’ of regulating post-war social repair. Through interview-based and ethnographic methods, it finds that stigmatization of LRA returnees takes many forms and serves multiple functions, calling into question whether this catch-all term actually obscures more than it illuminates. While stigmatization is usually practised as a form of ‘social control’, its function can be ‘reintegrative’ rather than purely exclusionary. Through the northern Uganda case study, this article seeks to advance conceptual and empirical understanding of the manifestations and functions of stigmatization in spaces of return, challenging the logic underpinning those interventions that seek to reduce it.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1392-1392
Author(s):  
Katherine Sutherland ◽  
Katherine Kong ◽  
Aaron C. Logan ◽  
Malek Faham ◽  
David B. Miklos

Abstract Background The prognostic significance of minimal residual disease (MRD) quantification in the post-transplant setting has been demonstrated in multiple lymphoid malignancies, including acute lymphoblastic leukemia (ALL), mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL). Previous studies support the clinical utility of molecular MRD quantification of tumor burden after allogeneic hematopoietic cell transplantation (allo-HCT) (Logan et al, Leukemia 2013). We have developed the ClonoSIGHT™ test, which is based on the deep sequencing of immunoglobulin and T-cell receptor rearrangements and has a detection limit of one cancer cell per million leukocytes in peripheral blood or bone marrow (Faham et al, Blood 2012; Armand et al, Brit J Haematol 2013). In this report, we will discuss the technical performance of the ClonoSIGHT test for routine MRD quantification after allo-HCT and present a case study on a patient with T-cell prolymphocytic leukemia (T-PLL). Methods A 55 year old female presented with T-PLL including symptomatic CNS disease, received 12 weeks of Alemtuzumab therapy and then 12 weeks following her last Alemtuzumab treatment received an unrelated donor myeloablative allo-HCT using Fludarabine, BCNU and Melphalan conditioning with antithymoglobulin, Mycophenolate mofetil and cyclosporine primary immune prophylaxis. Peripheral blood samples were collected for MRD assessment before and serially after allo-HCT. Using universal primer sets, we amplified T-cell receptor beta (TRB), delta (TRD) and gamma (TRG) variable, diversity, and joining gene segments from genomic DNA isolated from peripheral blood mononuclear cells (PBMC). Amplified products were sequenced and analyzed using standardized algorithms for clonotype determination, and leukemia-specific clonotypes were identified based on their frequency within the T-cell repertoire (>5%). The leukemia-specific clonotype was then quantified in serial peripheral blood samples and reported as the absolute number of leukemic-specific clones among total leukocytes. Results A single clonal TRG gene rearrangement accounting for 26.1% WBC in the pre-transplant sample was identified and quantified in serial peripheral blood samples. A 4-log decline in MRD levels occurred post allo-HCT (Figure 1) thru 56 days following graft infusion; however, serial MRD monitoring demonstrated increasing levels of leukemia-specific clonotypes in the peripheral blood over time (Figure 1). Immunosuppression tapering strategies were employed in response to clinical events and MRD levels. Specifically, the patient developed an EBV+ post-transplant lymphoproliferative disease (PTLD) 60 days post allo-HCT, and cyclosporine was tapered in addition to instituting anti-CD20 rituximab treatment. As per institutional practice, a bone marrow biopsy 84 days post-HCT showed full donor engraftment with normal cellularity and no evidence of PLL was detected by flow cytometry when ClonoSIGHT detected 0.013% PLL in the patient's blood. Unfortunately, in the setting of immune suppression taper at 100 days post allo-HCT, the patient developed Grade II skin GVHD and was treated with 0.5mg/kg prednisone daily and tapered as indicated. At 160 days post allo-HCT, the patient presented with new skin papules suspected to be leukemia cutis. The PLL clonotype was detected in the skin biopsy; however, it was present at lower frequency in the TRG repertoire than in the blood, thus not supporting a diagnosis of leukemia cutis. In agreement, skin pathology revealed Verruca Vulgaris (warts). However, the patient's MRD continued to increase in the blood while immunosuppression was tapered and stopped completely 6 months post-HCT. Conclusions MRD assessment can be used to monitor a patient's disease progression after immune cellular therapy and aids immune suppression management following allo-HCT. Further, as presented in this case study, ClonoSIGHT detection of the leukemia clone in the blood compared with other tissues can sensitively and specifically assess extramedullary relapse. Disclosures: Kong: Sequenta, Inc.: Employment, Equity Ownership. Faham:Sequenta, Inc.: Employment, Equity Ownership, Membership on an entity’s Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document