scholarly journals Impairment of the Hif-1α regulatory pathway in Foxn1-deficient (Foxn1−/−) mice affects the skin wound healing process

2020 ◽  
Author(s):  
Sylwia Machcinska ◽  
Marta Kopcewicz ◽  
Joanna Bukowska ◽  
Katarzyna Walendzik ◽  
Barbara Gawronska-Kozak

ABSTRACTHypoxia and hypoxia-regulated factors [e. g., hypoxia-inducible factor-1α (Hif-1α), factor inhibiting Hif-1α (Fih-1), thioredoxin-1 (Trx-1), aryl hydrocarbon receptor nuclear translocator 2 (Arnt-2)] have essential roles in skin wound healing. Using Foxn1−/− mice that can heal skin injuries in a unique scarless manner, we investigated the interaction between Foxn1 and hypoxia-regulated factors. The Foxn1−/− mice displayed impairments in the regulation of Hif-1α, Trx-1 and Fih-1 but not Arnt-2 during the healing process. An analysis of wounded skin showed that the skin of the Foxn1−/− mice healed in a scarless manner, displaying rapid re-epithelialization and an increase in transforming growth factor β (Tgfβ-3) and collagen III expression. An in vitro analysis revealed that Foxn1 overexpression in keratinocytes isolated from the skin of the Foxn1−/− mice led to reduced Hif-1α expression in normoxic but not hypoxic cultures and inhibited Fih-1 expression exclusively under hypoxic conditions. These data indicate that in the skin, Foxn1 affects hypoxia-regulated factors that control the wound healing process and suggest that under normoxic conditions, Foxn1 is a limiting factor for Hif-1α.

2012 ◽  
Vol 302 (8) ◽  
pp. C1213-C1225 ◽  
Author(s):  
Chen Zhang ◽  
Chek Kun Tan ◽  
Craig McFarlane ◽  
Mridula Sharma ◽  
Nguan Soon Tan ◽  
...  

Myostatin (Mstn) is a secreted growth and differentiation factor that belongs to the transforming growth factor-β (TGF-β) superfamily. Mstn has been well characterized as a regulator of myogenesis and has been shown to play a critical role in postnatal muscle regeneration. Herein, we report for the first time that Mstn is expressed in both epidermis and dermis of murine and human skin and that Mstn-null mice exhibited delayed skin wound healing attributable to a combination of effects resulting from delayed epidermal reepithelialization and dermal contraction. In epidermis, reduced keratinocyte migration and protracted keratinocyte proliferation were observed, which subsequently led to delayed recovery of epidermal thickness and slower reepithelialization. Furthermore, primary keratinocytes derived from Mstn-null mice displayed reduced migration capacity and increased proliferation rate as assessed through in vitro migration and adhesion assays, as well as bromodeoxyuridine incorporation and Western blot analysis. Moreover, in dermis, both fibroblast-to-myofibroblast transformation and collagen deposition were concomitantly reduced, resulting in a delayed dermal wound contraction. These decreases are due to the inhibition of TGF-β signaling. In agreement, the expression of decorin, a naturally occurring TGF-β suppressor, was elevated in Mstn-null mice; moreover, topical treatment with TGF-β1 protein rescued the impaired skin wound healing observed in Mstn-null mice. These observations highlight the interplay between TGF-β and Mstn signaling pathways, specifically through Mstn regulation of decorin levels during the skin wound healing process. Thus we propose that Mstn agonists might be beneficial for skin wound repair.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2554
Author(s):  
Marek Konop ◽  
Anna K. Laskowska ◽  
Mateusz Rybka ◽  
Ewa Kłodzińska ◽  
Dorota Sulejczak ◽  
...  

Impaired wound healing is a major medical challenge, especially in diabetics. Over the centuries, the main goal of tissue engineering and regenerative medicine has been to invent biomaterials that accelerate the wound healing process. In this context, keratin-derived biomaterial is a promising candidate due to its biocompatibility and biodegradability. In this study, we evaluated an insoluble fraction of keratin containing casomorphin as a wound dressing in a full-thickness surgical skin wound model in mice (n = 20) with iatrogenically induced diabetes. Casomorphin, an opioid peptide with analgesic properties, was incorporated into keratin and shown to be slowly released from the dressing. An in vitro study showed that keratin-casomorphin dressing is biocompatible, non-toxic, and supports cell growth. In vivo experiments demonstrated that keratin-casomorphin dressing significantly (p < 0.05) accelerates the whole process of skin wound healing to the its final stage. Wounds covered with keratin-casomorphin dressing underwent reepithelization faster, ending up with a thicker epidermis than control wounds, as confirmed by histopathological and immunohistochemical examinations. This investigated dressing stimulated macrophages infiltration, which favors tissue remodeling and regeneration, unlike in the control wounds in which neutrophils predominated. Additionally, in dressed wounds, the number of microhemorrhages was significantly decreased (p < 0.05) as compared with control wounds. The dressing was naturally incorporated into regenerating tissue during the wound healing process. Applied keratin dressing favored reconstruction of more regular skin structure and assured better cosmetic outcome in terms of scar formation and appearance. Our results have shown that insoluble keratin wound dressing containing casomorphin supports skin wound healing in diabetic mice.


2020 ◽  
Author(s):  
Daisuke Ito ◽  
Hiroyasu Ito ◽  
Takayasu Ideta ◽  
Ayumu Kanbe ◽  
Soranobu Ninomiya ◽  
...  

Abstract Background The skin wound healing process is regulated by various cytokines, chemokines, and growth factors. Recent reports have demonstrated that spermine/spermidine (SPD) promote wound healing through urokinase-type plasminogen activator (uPA)/uPA receptor (uPAR) signaling in vitro. Here, we investigated whether the systemic and topical administration of SPD would accelerate the skin wound-repair process in vivo.Methods A skin wound repair model was established using C57BL/6 J mice. SPD was mixed with white petrolatum for topical administration. For systemic administration, SPD mixed with drinking water was orally administered. Changes in wound size over time were calculated using digital photography.Results Systemic and topical SPD treatment significantly accelerated skin wound healing. The administration of SPD promoted the uPA/uPAR pathway in wound sites. Moreover, topical treatment with SPD enhanced the expression of IL-6 and TNF-α in wound sites. Scratch and cell proliferation assays revealed that SPD administration accelerated scratch wound closure and cell proliferation in vitro.Conclusion These results indicate that treatment with SPD promotes skin wound healing through activation of the uPA/uPAR pathway and induction of the inflammatory response in wound sites. The administration of SPD might contribute to new effective treatments to accelerate skin wound healing.


2018 ◽  
Vol 38 (2) ◽  
Author(s):  
Zhen-han Deng ◽  
Jian-jian Yin ◽  
Wei Luo ◽  
Ronak Naveenchandra Kotian ◽  
Shan-shan Gao ◽  
...  

Chronic nonhealing wounds pose a significant challenge to healthcare system because of its tremendous utilization of resources and time to heal. It has a well-deserved reputation for reducing the quality of life for those affected and represent a substantial economic burden to the healthcare system overall. Earthworms are used as a traditional Chinese medicine, and have been applied pharmacologically and clinically since a long time in China. However, there is paucity in data regarding its wound healing effects. Therefore, we investigated the effect of earthworm extract (EE) on skin wound healing process. The obtained data showed that EE has healing effects on local wound of mice. It decreased the wound healing time and reduced the ill-effects of inflammation as determined by macroscopic, histopathologic, hematologic, and immunohistochemistry parameters. The potential mechanism could be accelerated hydroxyproline and transforming growth factor-β secretion—thus increasing the synthesis of collagen, promoting blood capillary, and fibroblast proliferation. It could accelerate the removal of necrotic tissue and foreign bodies by speeding up the generation of interleukin-6, white blood cells, and platelets. It thus enhances immunity, reduces the risk of infection, and promotes wound healing. All in all, the obtained data demonstrated that EE improves quality of healing and could be used as a propitious wound healing agent.


2016 ◽  
Vol 18 (4) ◽  
pp. 411-419 ◽  
Author(s):  
Eva L. Arantes ◽  
Nathalia Dragano ◽  
Albina Ramalho ◽  
Daniele Vitorino ◽  
Gabriela F. de-Souza ◽  
...  

Background: The development of methods for improving skin wound healing may have an impact on the outcomes of a number of medical conditions. The topical use of polyunsaturated fatty acids (PUFAs) can accelerate skin wound healing through mechanisms that involve, at least in part, the modulation of inflammatory activity. Purpose: We evaluated whether G-protein-coupled receptor 120 (GPR120), a recently identified receptor for docosahexaenoic acid (DHA) with anti-inflammatory activity, is expressed in the skin and responds to topical DHA. Method: Male Wistar rats were submitted to an 8.0-mm wound on the back and were immediately administered a topical treatment of a solution containing 30 μM of DHA once a day. The healing process was photodocumented, and tissues were collected on Days 5, 9, and 15 for protein and RNA analyses and histological evaluation. Results: GPR120 was expressed in the intact skin and in the wound. Keratinocytes expressed the most skin GPR120, while virtually no expression was detected in fibroblasts. Upon DHA topical treatment, wound healing was significantly accelerated and was accompanied by the molecular activation of GPR120, as determined by its association with β-arrestin-2. In addition, DHA promoted a reduction in the expression of interleukin (IL) 1β and an increase in the expression of IL-6. Furthermore, there was a significant increase in expression of transforming growth factor β (TGF-β) and the keratinocyte marker involucrin. Discussion: Topical DHA improved skin wound healing. The activation of GPR120 is potentially involved in this process.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Daisuke Ito ◽  
Hiroyasu Ito ◽  
Takayasu Ideta ◽  
Ayumu Kanbe ◽  
Soranobu Ninomiya ◽  
...  

Abstract Background The skin wound healing process is regulated by various cytokines, chemokines, and growth factors. Recent reports have demonstrated that spermine/spermidine (SPD) promote wound healing through urokinase-type plasminogen activator (uPA)/uPA receptor (uPAR) signaling in vitro. Here, we investigated whether the systemic and topical administration of SPD would accelerate the skin wound-repair process in vivo. Methods A skin wound repair model was established using C57BL/6 J mice. SPD was mixed with white petrolatum for topical administration. For systemic administration, SPD mixed with drinking water was orally administered. Changes in wound size over time were calculated using digital photography. Results Systemic and topical SPD treatment significantly accelerated skin wound healing. The administration of SPD promoted the uPA/uPAR pathway in wound sites. Moreover, topical treatment with SPD enhanced the expression of IL-6 and TNF-α in wound sites. Scratch and cell proliferation assays revealed that SPD administration accelerated scratch wound closure and cell proliferation in vitro. Conclusion These results indicate that treatment with SPD promotes skin wound healing through activation of the uPA/uPAR pathway and induction of the inflammatory response in wound sites. The administration of SPD might contribute to new effective treatments to accelerate skin wound healing.


2019 ◽  
Vol 20 (19) ◽  
pp. 4727 ◽  
Author(s):  
Antonella D’Agostino ◽  
Rosa Maritato ◽  
Annalisa La Gatta ◽  
Alessandra Fusco ◽  
Sabrina Reale ◽  
...  

The effectiveness of hyaluronic acid (HA), also called as hyaluronan, and its formulations on tissue regeneration and epidermal disease is well-documented. High-molecular-weight hyaluronan (HHA) is an efficient space filler that maintains hydration, serves as a substrate for proteoglycan assembly, and is involved in wound healing. Recently, an innovative hybrid cooperative complex (HCC) of high- and low-molecular-weight hyaluronan was developed that is effective in wound healing and bioremodeling. The HCC proposed here consisted of a new formulation and contained 1.6 ± 0.1 kDa HHA and 250 ± 7 kDa LHA (low molecular weight hyaluronic acid). We investigated the performance of this HCC in a novel in vitro HaCaT (immortalized human keratinocytes)/HDF (human dermal fibroblast) co-culture model to assess its ability to repair skin tissue lesions. Compared to linear HA samples, HCC reduced the biomarkers of inflammation (Transforming Growth Factor-β (TGF-β), Tumor Necrosis Factor receptor-α (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8)), and accelerated the healing process. These data were confirmed by the modulation of metalloproteases (MMPs) and elastin, and were compatible with a prospectively reduced risk of scar formation. We also examined the expression of defensin-2, an antimicrobial peptide, in the presence of hyaluronan, showing a higher expression in the HCC-treated samples and suggesting a potential increase in antibacterial and immunomodulatory functions. Based on these in vitro data, the presence of HCC in creams or dressings would be expected to enhance the resolution of inflammation and accelerate the skin wound healing process.


2019 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Roghaye Savari ◽  
Mohammad Shafiei ◽  
Hamid Galehdari ◽  
Mahnaz Kesmati

2014 ◽  
Vol 23 (7) ◽  
pp. 480-485 ◽  
Author(s):  
Hana Jin ◽  
Jihye Seo ◽  
So Young Eun ◽  
Young Nak Joo ◽  
Sang Won Park ◽  
...  

2018 ◽  
Vol 19 (10) ◽  
pp. 3025 ◽  
Author(s):  
Hyeon-Ki Jang ◽  
Jin Oh ◽  
Gun-Jae Jeong ◽  
Tae-Jin Lee ◽  
Gwang-Bum Im ◽  
...  

Electrical stimulation (ES) is known to affect the wound healing process by modulating skin cell behaviors. However, the conventional clinical devices that can generate ES for promoting wound healing require patient hospitalization due to large-scale of the extracorporeal devices. Herein, we introduce a disposable photovoltaic patch that can be applied to skin wound sites to control cellular microenvironment for promoting wound healing by generating ES. In vitro experiment results show that exogenous ES could enhance cell migration, proliferation, expression of extracellular matrix proteins, and myoblast differentiation of fibroblasts which are critical for wound healing. Our disposable photovoltaic patches were attached to the back of skin wound induced mice. Our patch successfully provided ES, generated by photovoltaic energy harvested from the organic solar cell under visible light illumination. In vivo experiment results show that the patch promoted cutaneous wound healing via enhanced host-inductive cell proliferation, cytokine secretion, and protein synthesis which is critical for wound healing process. Unlike the current treatments for wound healing that engage passive healing processes and often are unsuccessful, our wearable photovoltaic patch can stimulate regenerative activities of endogenous cells and actively contribute to the wound healing processes.


Sign in / Sign up

Export Citation Format

Share Document