scholarly journals Lanthipeptide Synthetases Participate the Biosynthesis of 2-Aminovinyl-Cysteine Motifs in Thioamitides

2020 ◽  
Author(s):  
Jingxia Lu ◽  
Yuan Wu ◽  
Jiao Li ◽  
Yuqing Li ◽  
Yingying Zhang ◽  
...  

ABSTRACTThioamitides are a group of ribosomally synthesized and post-translational modified peptides with potent antiproliferative and pro-apoptotic activities. Their biosynthesis remains largely unknown, especially for the characteristic C-terminal 2-aminovinyl-Cysteine (AviCys) motifs. Herein, we report the discovery that homologs of class III lanthipeptide synthetases (LanKCts)encoded outside putative thioamitide biosynthetic gene clusters (BGCs) fully dehydrate the precursor peptides. Remarkably, LanKCt enzymes bind tightly to cysteine decarboxylases encoded inside thioamitide BGCs, and the resulting complex complete the macrocyclization of AviCys rings. Furthermore, LanKCt enzymes are present in the genomes of many thioamitide-producing strains and are functional when in complex with cysteine decarboxylases to produce AviCys macrocycles. Thus, our study reveals the participation of lanthipeptide synthetases as a general strategy for dehydration and AviCys formation during thioamitides biosynthesis and thus paves the way for the bioengineering of this class of bioactive natural products.

2019 ◽  
Vol 116 (7) ◽  
pp. 2533-2538 ◽  
Author(s):  
Shaoming Chen ◽  
Bing Xu ◽  
Erquan Chen ◽  
Jiaqi Wang ◽  
Jingxia Lu ◽  
...  

Lanthipeptides are an important subfamily of ribosomally synthesized and posttranslationally modified peptides, and the removal of their N-terminal leader peptides by a designated protease(s) is a key step during maturation. Whereas proteases for class I and II lanthipeptides are well-characterized, the identity of the protease(s) responsible for class III leader processing remains unclear. Herein, we report that the class III lanthipeptide NAI-112 employs a bifunctional Zn-dependent protease, AplP, with both endo- and aminopeptidase activities to complete leader peptide removal, which is unprecedented in the biosynthesis of lanthipeptides. AplP displays a broad substrate scope in vitro by processing a number of class III leader peptides. Furthermore, our studies reveal that AplP-like proteases exist in the genomes of all class III lanthipeptide-producing strains but are usually located outside the biosynthetic gene clusters. Biochemical studies show that AplP-like proteases are universally responsible for the leader removal of the corresponding lanthipeptides. In addition, AplP-like proteases are phylogenetically correlated with aminopeptidase N from Escherichia coli, and might employ a single active site to catalyze both endo- and aminopeptidyl hydrolysis. These findings solve the long-standing question as to the mechanism of leader peptide processing during class III lanthipeptide biosynthesis, and pave the way for the production and bioengineering of this class of natural products.


Author(s):  
Suhad A. A. Al-Salihi ◽  
Ian D. Bull ◽  
Raghad Al-Salhi ◽  
Paul J. Gates ◽  
Kifah S. M. Salih ◽  
...  

Natural products with novel chemistry are urgently needed to battle the continued increase in microbial drug resistance. Mushroom-forming fungi are underutilized as a source of novel antibiotics in the literature due to their challenging culture preparation and genetic intractability. However, modern fungal molecular and synthetic biology tools have renewed interest in exploring mushroom fungi for novel therapeutic agents. The aims of this study were to investigate the secondary metabolites of nine basidiomycetes, screen their biological and chemical properties, and then investigate the genetic pathways associated with their production. Of the nine fungi selected, Hypholoma fasciculare was revealed to be a highly active antagonistic species, with antimicrobial activity against three different microorganisms: Bacillus subtilis, Escherichia coli, and Saccharomyces cerevisiae. Genomic comparisons and chromatographic studies were employed to characterize more than 15 biosynthetic gene clusters and resulted in the identification of 3,5-dichloromethoxy benzoic acid as a potential antibacterial compound. The biosynthetic gene cluster for this product is also predicted. This study reinforces the potential of mushroom-forming fungi as an underexplored reservoir of bioactive natural products. Access to genomic data, and chemical-based frameworks, will assist the development and application of novel molecules with applications in both the pharmaceutical and agrochemical industries.


2014 ◽  
Vol 111 (10) ◽  
pp. 3757-3762 ◽  
Author(s):  
Zachary Charlop-Powers ◽  
Jeremy G. Owen ◽  
Boojala Vijay B. Reddy ◽  
Melinda A. Ternei ◽  
Sean F. Brady

In this study, we compare biosynthetic gene richness and diversity of 96 soil microbiomes from diverse environments found throughout the southwestern and northeastern regions of the United States. The 454-pyroseqencing of nonribosomal peptide adenylation (AD) and polyketide ketosynthase (KS) domain fragments amplified from these microbiomes provide a means to evaluate the variation of secondary metabolite biosynthetic diversity in different soil environments. Through soil composition and AD- and KS-amplicon richness analysis, we identify soil types with elevated biosynthetic potential. In general, arid soils show the richest observed biosynthetic diversity, whereas brackish sediments and pine forest soils show the least. By mapping individual environmental amplicon sequences to sequences derived from functionally characterized biosynthetic gene clusters, we identified conserved soil type–specific secondary metabolome enrichment patterns despite significant sample-to-sample sequence variation. These data are used to create chemical biogeographic distribution maps for biomedically valuable families of natural products in the environment that should prove useful for directing the discovery of bioactive natural products in the future.


Author(s):  
Patrick Videau ◽  
Kaitlyn Wells ◽  
Arun Singh ◽  
Jessie Eiting ◽  
Philip Proteau ◽  
...  

Cyanobacteria are prolific producers of natural products and genome mining has shown that many orphan biosynthetic gene clusters can be found in sequenced cyanobacterial genomes. New tools and methodologies are required to investigate these biosynthetic gene clusters and here we present the use of <i>Anabaena </i>sp. strain PCC 7120 as a host for combinatorial biosynthesis of natural products using the indolactam natural products (lyngbyatoxin A, pendolmycin, and teleocidin B-4) as a test case. We were able to successfully produce all three compounds using codon optimized genes from Actinobacteria. We also introduce a new plasmid backbone based on the native <i>Anabaena</i>7120 plasmid pCC7120ζ and show that production of teleocidin B-4 can be accomplished using a two-plasmid system, which can be introduced by co-conjugation.


2016 ◽  
Vol 89 ◽  
pp. 18-28 ◽  
Author(s):  
Yong Fuga Li ◽  
Kathleen J.S. Tsai ◽  
Colin J.B. Harvey ◽  
James Jian Li ◽  
Beatrice E. Ary ◽  
...  

2020 ◽  
Author(s):  
Audam Chhun ◽  
Despoina Sousoni ◽  
Maria del Mar Aguiló-Ferretjans ◽  
Lijiang Song ◽  
Christophe Corre ◽  
...  

AbstractBacteria from the Actinomycete family are a remarkable source of natural products with pharmaceutical potential. The discovery of novel molecules from these organisms is, however, hindered because most of the biosynthetic gene clusters (BGCs) encoding these secondary metabolites are cryptic or silent and are referred to as orphan BGCs. While co-culture has proven to be a promising approach to unlock the biosynthetic potential of many microorganisms by activating the expression of these orphan BGCs, it still remains an underexplored technique. The marine actinobacteria Salinispora tropica, for instance, produces valuable compounds such as the anti-cancer molecule salinosporamide A but half of its putative BGCs are still orphan. Although previous studies have looked into using marine heterotrophs to induce orphan BGCs in Salinispora, the potential impact of co-culturing marine phototrophs with Salinispora has yet to be investigated. Following the observation of clear antimicrobial phenotype of the actinobacterium on a range of phytoplanktonic organisms, we here report the discovery of novel cryptic secondary metabolites produced by S. tropica in response to its co-culture with photosynthetic primary producers. An approach combining metabolomics and proteomics revealed that the photosynthate released by phytoplankton influences the biosynthetic capacities of S. tropica with both production of new molecules and the activation of orphan BGCs. Our work pioneers the use of phototrophs as a promising strategy to accelerate the discovery of novel natural products from actinobacteria.ImportanceThe alarming increase of antimicrobial resistance has generated an enormous interest in the discovery of novel active compounds. The isolation of new microbes to untap novel natural products is currently hampered because most biosynthetic gene clusters (BGC) encoded by these microorganisms are not expressed under standard laboratory conditions, i.e. mono-cultures. Here we show that co-culturing can be an easy way for triggering silent BGC. By combining state-of-the-art metabolomics and high-throughput proteomics, we characterized the activation of cryptic metabolites and silent biosynthetic gene clusters in the marine actinobacteria Salinispora tropica by the presence of phytoplankton photosynthate. We further suggest a mechanistic understanding of the antimicrobial effect this actinobacterium has on a broad range of prokaryotic and eukaryotic phytoplankton species and reveal a promising candidate for antibiotic production.


Medicines ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 32 ◽  
Author(s):  
Ray Chen ◽  
Hon Wong ◽  
Brendan Burns

Microorganisms in the environment can produce a diverse range of secondary metabolites (SM), which are also known as natural products. Bioactive SMs have been crucial in the development of antibiotics and can also act as useful compounds in the biotechnology industry. These natural products are encoded by an extensive range of biosynthetic gene clusters (BGCs). The developments in omics technologies and bioinformatic tools are contributing to a paradigm shift from traditional culturing and screening methods to bioinformatic tools and genomics to uncover BGCs that were previously unknown or transcriptionally silent. Natural product discovery using bioinformatics and omics workflow in the environment has demonstrated an extensive distribution of BGCs in various environments, such as soil, aquatic ecosystems and host microbiome environments. Computational tools provide a feasible and culture-independent route to find new secondary metabolites where traditional approaches cannot. This review will highlight some of the advances in the approaches, primarily bioinformatic, in identifying new BGCs, especially in environments where microorganisms are rarely cultured. This has allowed us to tap into the huge potential of microbial dark matter.


2020 ◽  
Author(s):  
Tom H. Eyles ◽  
Natalia M. Vior ◽  
Rodney Lacret ◽  
Andrew W. Truman

ABSTRACTThiostreptamide S4 is a thioamitide, a family of promising antitumour ribosomally synthesised and post-translationally modified peptides (RiPPs). The thioamitides are one of the most structurally complex RiPP families, yet very few thioamitide biosynthetic steps have been elucidated, even though the gene clusters of multiple thioamitides have been identified. We hypothesised that engineering the thiostreptamide S4 gene cluster in a heterologous host could provide insights into its biosynthesis when coupled with untargeted metabolomics and targeted mutations of the precursor peptide. Modified gene clusters were constructed, and in-depth metabolomics enabled a detailed understanding of the biosynthetic pathway, including the identification of an effector-like protein critical for amino acid dehydration. We use this biosynthetic understanding to bioinformatically identify new widespread families of RiPP biosynthetic gene clusters, paving the way for future RiPP discovery and engineering.


2018 ◽  
Author(s):  
Kwo-Kwang Abraham Wang ◽  
Tai L. Ng ◽  
Peng Wang ◽  
Zedu Huang ◽  
Emily P. Balskus ◽  
...  

AbstractFosfazinomycin and kinamycin are natural products that contain nitrogen-nitrogen (N-N) bonds but that are otherwise structurally unrelated. Despite their considerable structural differences, their biosynthetic gene clusters share a set of genes predicted to facilitate N-N bond formation. In this study, we show that for both compounds, one of the nitrogen atoms in the N-N bond originates from nitrous acid. Furthermore, we show that for both compounds, an acetylhydrazine biosynthetic synthon is generated first and then funneled via a glutamyl carrier into the respective biosynthetic pathways. Therefore, unlike other pathways to NN bond-containing natural products wherein the N-N bond is formed directly on a biosynthetic intermediate, during the biosyntheses of fosfazinomycin, kinamycin, and related compounds, the N-N bond is made in an independent pathway that forms a branch of a convergent route to structurally complex natural products.


2021 ◽  
Author(s):  
Aman S. Imani ◽  
Aileen R. Lee ◽  
Nisha Vishwanathan ◽  
Floris de Waal ◽  
Michael F. Freeman

Borosins are ribosomally synthesized and post-translationally modified peptides (RiPPs) with α-N-methylations installed on the peptide backbone that impart unique properties like proteolytic stability to these natural products. The borosin RiPP family was initially reported only in fungi until our recent discovery and characterization of a Type IV split borosin system in the metal-respiring bacterium Shewanella oneidensis. Here, we used hidden Markov models and sequence similarity networks to identify over 1,600 putative pathways that show split borosin biosynthetic gene clusters are widespread in bacteria. Noteworthy differences in precursor and α-N-methyltransferase open reading frame sizes, architectures, and core peptide properties allow further subdivision of the borosin family into six additional discrete structural types, of which five have been validated in this study.


Sign in / Sign up

Export Citation Format

Share Document