scholarly journals Evidence for contribution of compound heterozygous variants in Wiskott-Aldrich syndrome like (WASL) gene for early onset Parkinson's disease

Author(s):  
Sumeet Kumar ◽  
Masoom M Abbas ◽  
Shyla T Govindappa ◽  
Uday B Muthane ◽  
Sanjay Pandey ◽  
...  

Background: Knowledge of genetic determinants in Parkinsons disease is still limited. Familial forms of the disease continue to provide a rich resource to capture the genetic spectrum in disease pathogenesis, and this approach has been exploited in this study. Methods: Informative members from a three-generation family of Indian ethnicity manifesting a likely autosomal recessive mode of inheritance of PD were used for whole exome sequencing. Variant data analysis and in vitro functional characterisation of putative disease causal variant(s) identified thereof were carried out in HEK-293 and SH-SY5Y cells using gene constructs of interest. Results: In a rather uncommon observation, two compound heterozygous variants, a rare missense (c.1139C>T:p.P380L) and a novel splice variant (c.1456+5TAGAG>G) in Wiskott-Aldrich syndrome like gene (WASL, 7q31), both predicted to be deleterious were shared among the proband and her two affected siblings. WASL, a gene hitherto unreported for PD is known to regulate actin polymerisation via Arp2/3 complex. Based on exon trapping assay using pSPL3 vector in HEK-293 cells, the splice variant showed skipping of exon10. Functional characterisation of the missense variant in SH-SY5Y cells demonstrated: i) significant alterations in neurite length and number; ii) decreased ROS tolerance in mutation carrying cells on TBPH induction, and iii) increase in alpha-synuclein protein. Screening for WASL variants in two independent PD cohorts identified four individuals with heterozygous but none with biallelic variants. Conclusion: WASL, with demonstrated functional relevance in neurons may be yet another putative disease causal gene for autosomal recessive PD encouraging assessment of its contribution across populations.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiao-Hui Wang ◽  
Le Xie ◽  
Sen Chen ◽  
Kai Xu ◽  
Xue Bai ◽  
...  

Congenital deafness is one of the most common causes of disability in humans, and more than half of cases are caused by genetic factors. Mutations of the MYO15A gene are the third most common cause of hereditary hearing loss. Using next-generation sequencing combined with auditory tests, two novel compound heterozygous variants c.2802_2812del/c.5681T>C and c.5681T>C/c.6340G>A in the MYO15A gene were identified in probands from two irrelevant Chinese families. Auditory phenotypes of the probands are consistent with the previously reported for recessive variants in the MYO15A gene. The two novel variants, c.2802_2812del and c.5681T>C, were identified as deleterious mutations by bioinformatics analysis. Our findings extend the MYO15A gene mutation spectrum and provide more information for rapid and precise molecular diagnosis of congenital deafness.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hong Jin ◽  
Xiaotun Ren ◽  
Husheng Wu ◽  
Yanqi Hou ◽  
Fang Fang

Background: Leukoencephalopathy with cerebral calcifications and cysts (LCC) is a rare autosomal recessive cerebral microangiopathy. Recently, biallelic variants in a non-protein-coding gene SNORD118 have been discovered to cause LCC.Case Presentation: We here report a genetically confirmed childhood case of LCC. The patient was a 4-year-and-1-month-old boy with focal seizures. The age at onset of his seizure was 10 days after birth. The seizures were well-controlled by antiepileptic treatment but reoccurred twice due to a head impact accident and a fever, respectively. He suffered from a self-limited esotropia and unsteady running gait during the seizure onset. He had the typical neuroimaging triad of multifocal intracranial calcifications, cysts, and leukoencephalopathy. Genetic analysis indicated that he carried compound heterozygous variants of n.*9C>T and n.3C>T in SNORD118, which were inherited from his parents.Conclusion: We report a childhood LCC case with compound heterozygous variants in SNORD118. To the best of our knowledge, the patient reported in our case had the youngest onset age of LCC with a determined genotype. The triad cerebral-imaging findings of calcifications, cysts, and leukoencephalopathy provide a crucial diagnostic basis. Moreover, the gene assessment, together with the clinical investigations, should be considered for the diagnosis of LCC.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Evelina Siavrienė ◽  
Gunda Petraitytė ◽  
Birutė Burnytė ◽  
Aušra Morkūnienė ◽  
Violeta Mikštienė ◽  
...  

Abstract Background Autosomal recessive limb–girdle muscular dystrophy-1 (LGMDR1), also known as calpainopathy, is a genetically heterogeneous disorder characterised by progression of muscle weakness. Homozygous or compound heterozygous variants in the CAPN3 gene are known genetic causes of this condition. The aim of this study was to confirm the molecular consequences of the CAPN3 variant NG_008660.1(NM_000070.3):c.1746-20C > G of an individual with suspected LGMDR1 by extensive complementary DNA (cDNA) analysis. Case presentation In the present study, we report on a male with proximal muscular weakness in his lower limbs. Compound heterozygous NM_000070.3:c.598_612del and NG_008660.1(NM_000070.3):c.1746-20C > G genotype was detected on the CAPN3 gene by targeted next-generation sequencing (NGS). To confirm the pathogenicity of the variant c.1746-20C > G, we conducted genetic analysis based on Sanger sequencing of the proband’s cDNA sample. The results revealed that this splicing variant disrupts the original 3′ splice site on intron 13, thus leading to the skipping of the DNA fragment involving exon 14 and possibly exon 15. However, the lack of exon 15 in the CAPN3 isoforms present in a blood sample was explained by cell-specific alternative splicing rather than an aberrant splicing mechanism. In silico the c.1746-20C > G splicing variant consequently resulted in frameshift and formation of a premature termination codon (NP_000061.1:p.(Glu582Aspfs*62)). Conclusions Based on the results of our study and the literature we reviewed, both c.598_612del and c.1746-20C > G variants are pathogenic and together cause LGMDR1. Therefore, extensive mRNA and/or cDNA analysis of splicing variants is critical to understand the pathogenesis of the disease.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Nobuhiro Hashimoto ◽  
Sumito Dateki ◽  
Eri Suzuki ◽  
Takatoshi Tsuchihashi ◽  
Aiko Isobe ◽  
...  

AbstractSitosterolemia is an autosomal recessive disorder that affects lipid metabolism and is characterized by elevated serum plant sterol levels, xanthomas, and accelerated atherosclerosis. In this study, we report a novel nonsense single-nucleotide variant, c.225G > A (p.Trp75*), and an East Asian population-specific missense multiple-nucleotide variant, c.1256_1257delTCinsAA (p.Ile419Lys), in the ABCG8 gene in a compound heterozygous state observed in a Japanese girl with sitosterolemia.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Niu Li ◽  
Yufei Xu ◽  
Yi Zhang ◽  
Guoqiang Li ◽  
Tingting Yu ◽  
...  

Abstract Background Gain-of-function pathogenic variants of the Erb-B2 receptor tyrosine kinase 3 (ERBB3) gene contribute to the occurrence and development of a variety of human carcinomas through activation of phosphatidylinositol 3-kinase (PI3K)/AKT and extracellular signal-regulated kinase (ERK) signaling. ERBB3 gene homozygous germline variants, whose loss of function may cause autosomal recessive congenital contractural syndrome, were recently identified. This study aims to identify the disease-causing gene in a Chinese pedigree with variable phenotypes involving multiple systems, including developmental delay, postnatal growth retardation, transient lower limb asymmetry, facial malformations, atrioventricular canal malformation, bilateral nystagmus and amblyopia, feeding difficulties, immunodeficiency, anemia, and liver damage, but without congenital contracture. Methods Trio-whole exome sequencing (WES) was performed to identify the disease-causing gene in a 24-month-old Chinese female patient. The pathogenicity of the identified variants was evaluated using in silico tools and in vitro functional studies. Results Trio-WES revealed compound heterozygous variants of c.1253 T > C (p.I418T) and c.3182dupA (p.N1061Kfs*16) in the ERBB3 gene. Functional studies showed that p.I418T resulted in normal expression of ERBB3, which was capable of interacting with ERBB2. However, the variant impaired ERBB3 phosphorylation, consequently blocking ERBB2 phosphorylation and AKT and ERK activation. The truncated protein resulting from the c.3182dupA variant also lacked the capacity to activate downstream signaling pathways. Conclusions We report the first patient with a novel multisystem syndrome disorder without congenital contracture resulting from biallelic loss-of-function variants of ERBB3.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Aliaa H. Abdelhakim ◽  
Avinash V. Dharmadhikari ◽  
Sara D. Ragi ◽  
Jose Ronaldo Lima de Carvalho ◽  
Christine L. Xu ◽  
...  

Abstract Background Primary coenzyme Q10 deficiency is a rare disease that results in diverse and variable clinical manifestations. Nephropathy, myopathy and neurologic involvement are commonly associated, however retinopathy has also been observed with certain pathogenic variants of genes in the coenzyme Q biosynthesis pathway. In this report, we describe a novel presentation of the disease that includes nephropathy and retinopathy without neurological involvement, and which is the result of a compound heterozygous state arising from the inheritance of two recessive potentially pathogenic variants, previously not described. Materials and methods Retrospective report, with complete ophthalmic examination, multimodal imaging, electroretinography, and whole exome sequencing performed on a family with three affected siblings. Results We show that affected individuals in the described family inherited two heterozygous variants of the COQ2 gene, resulting in a frameshift variant in one allele, and a predicted deleterious missense variant in the second allele (c.288dupC,p.(Ala97Argfs*56) and c.376C > G,p.(Arg126Gly) respectively). Electroretinography results were consistent with rod-cone dystrophy in the affected individuals. All affected individuals in the family exhibited the characteristic retinopathy as well as end-stage nephropathy, without evidence of any neurological involvement. Conclusions We identified two novel compound heterozygous variants of the COQ2 gene that result in primary coenzyme Q deficiency. Targeted sequencing of coenzyme Q biosynthetic pathway genes may be useful in diagnosing oculorenal clinical presentations syndromes not explained by more well known syndromes (e.g., Senior-Loken and Bardet-Biedl syndromes).


Author(s):  
Radha Rama Devi Akella

Abstract Objective To evaluate the cause of short stature in children. Case presentation Two children with suspected skeletal dysplasia and short stature were evaluated. Conclusions The 3-M syndrome is a primordial growth disorder manifesting severe postnatal growth restriction, skeletal anomalies and prominent fleshy heels. The 3-M syndrome is a genetically heterogeneous disorder and the phenotype is similar. This is a rare autosomal recessive disorder with normal intellect. Two affected children have been identified by whole-exome sequencing. One patient harboured a compound heterozygous variant and the other was a homozygous missense variant. The genetic diagnosis helped in counselling the families and facilitated prenatal diagnosis in one (case 1) family.


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ke Tong ◽  
Geng-Sheng Yu

Abstract Background LPIN1-related acute recurrent rhabdomyolysis (RM), first reported in 2008, is an autosomal recessive inherited metabolic disease. In recent years, LPIN1 gene variants have been identified as one of the main causes of severe RM in children in Western countries. The disease is extremely rare in China, and we report a case of acute recurrent RM caused by a novel compound heterozygous LPIN1 variant. Case presentation A 15-year-old Chinese boy presented with myalgia after strenuous exercise, accompanied by transient increases in serum creatine kinase and myoglobin and persistent hyperuricaemia and hyperbilirubinaemia. Genetic analysis using high-throughput genomic sequencing and Sanger sequencing revealed that there was a compound heterozygous variant in the LPIN1 gene of the proband: the paternal c.2047A > G(p.I683V) was an unreported missense variant, and the maternal c.2107_2108 insAGG(p.Q703delin sQE) was an unreported in-frame variant. Conclusions In children with RM, LPIN1 variants should always be considered in the differential diagnosis. The clinical features of our case are atypical, which highlights the importance of an accurate diagnosis by genetic testing. If detected early, the condition may be controlled, and the prognosis may be improved.


Children ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 836
Author(s):  
Rana Al Balwi ◽  
Dalal Bubshait ◽  
Raed Al Nefily ◽  
Omar Al Ghamdi

Congenital hyperinsulinism (CHI) is characterized by dysregulated insulin secretion, resulting in severe hypoglycemia. Mutations in the ABCC8 and KCNJ11 genes encoding KATP channels in beta cells of the pancreas are common among patients with CHI. Autosomal recessive CHI with diffuse involvement is the most common type of CHI among Saudi patients. It is relatively common for patients with autosomal recessive CHI to be medically unresponsive and undergo pancreatectomy. In this case report, we describe novel compound heterozygous variants in the ABCC8 gene in a Saudi infant that caused diazoxide-unresponsive CHI. The variants included a monoallelic paternally inherited variant that has been previously reported to cause a focal form of CHI and a maternally inherited variant of unknown significance (VUS). The severity of CHI in this patient was mild over the one-year follow-up period, with a near-optimal glycemic response on a low dose of octreotide. We suspected an atypical subtype of histological involvement in the patient. In this report, we highlight the phenotypic spectrum of novel compound heterozygous variants in a patient with CHI and consider that the report can help establish the pathogenicity of the VUS.


Sign in / Sign up

Export Citation Format

Share Document