compound heterozygous state
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 18)

H-INDEX

6
(FIVE YEARS 1)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Yuyu Li ◽  
Ruyi Li ◽  
Hehua Dai ◽  
Genlin Li

Abstract Background Retinitis pigmentosa (RP) is a genetically heterogeneous disease with 89 causative genes identified to date. However, only approximately 60% of RP cases genetically solved to date, predicating that many novel disease-causing variants are yet to be identified. The purpose of this study is to identify novel variants in PDE6A and PDE6B genes and present its phenotypes in patients with retinitis pigmentosa in Chinese families. Methods Five retinitis pigmentosa patients with PDE6A variants and three with PDE6B variants were identified through a hereditary eye disease enrichment panel (HEDEP), all patients’ medical and ophthalmic histories were collected, and ophthalmological examinations were performed, followed by an analysis of the possible causative variants. Sanger sequencing was used to verify the variants. Results We identified 20 variants in eight patients: 16 of them were identified in either PDE6A or PDE6B in a compound heterozygous state. Additional four heterozygous variants were identified in the genes ADGRA3, CA4, OPTN, RHO. Two novel genetic changes in PDE6A were identified (c.1246G > A and c.1747 T > A), three novel genetic changes in PDE6B were identified (c.401 T > C, c.2293G > C and c.1610-1612del), out of the novel identified variants one was most probably non-pathogenic (c.2293G > C), all other novel variants are pathogenic. Additional variant was identified in CA4 and RHO, which can cause ADRP (c.243G > A, c.688G > A). In addition, a novel variant in ADGRA3 was identified (c.921-1G > A). Conclusions This study reveals novel and known variants in PDE6A and PDE6B genes in Chinese families with autosomal recessive RP, and expands the clinical and genetic findings of photoreceptor-specific enzyme deficiencies.


2021 ◽  
Vol 11 (2) ◽  
pp. 48-55
Author(s):  
T. V. Markova ◽  
E. L. Dadali ◽  
S. S. Nikitin ◽  
A.  F . Murtazina ◽  
O. L. Mironovich ◽  
...  

Mutations in the PIEZO2 gene, which is involved in the formation of the mechanosensitive cation channel Piezo2, can cause distal arthrogryposis type 3 (Gordon’s syndrome), type 5, and Marden–Walker syndrome. Clinical and genetic characteristics of two patients with distal arthrogryposis with autosomal dominant inheritance and one with autosomal recessive inheritance are presented. Exome sequencing in one case revealed a de novo mutation in exon 52 of the PIEZO2gene c.8238G>A (p.Trp2746*, NM_022068.3), in the second, a known deletion of three nucleotides in exon 52 of the PIEZO2 gene c.8181_8183delAGA (p Glu2727del, NM_022068.3) was found, in the third, two mutations in the compound heterozygous state – a deletion of four nucleotides leading to a shift in the reading frame in c.1863_1866delTCAG(p.Ser621fs, NM_022068) and a deletion with putative coordinates 10785050–10789339 bp, spanning 15–16 exons of the PIEZO2 gene (NM_022068; LOD 2.40). The third patient was found to have two newly detected mutations in the compound heterozygous state – a deletion of four nucleotides, leading to a shift in the reading frame in exon 14, p.1863_1866delTCAG (p.Ser621fs, NM_022068) and a deletion with assumed coordinates 10785050–10789339 b. o., (NM_022068; LOD 2.40), spanning 15–16 exons of the PIEZO2 gene. The previous assumption was confirmed that heterozygous mutations are more often localized in exon 52 of the PIEZO2 gene and disrupt the amino acid sequence of the C‑terminal region of the protein molecule, while in patients with an autosomal recessive mode of inheritance of the mutation, the N‑terminal region is more often found.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuan Chen ◽  
Ying Jiang ◽  
Bangwu Chen ◽  
Yeqing Qian ◽  
Jiao Liu ◽  
...  

Nonimmune hydrops fetalis (NIHF) is a serious and complex fetal condition. Prenatal diagnosis of hydrops fetalis is not difficult by ultrasound. However, determining the underlying etiology of NIHF remains a challenge which is essential to address for prenatal counseling. We extracted DNA from a proband prenatally diagnosed unexplained NIHF. Trio-whole exome sequencing (WES) was performed to filter candidate causative variants. Two gene mutations were identified as a compound heterozygous state in the proband. Both variants located on the PIEZO1 gene: c.3895C > T, a missense mutation in exon 27 paternally inherited; c.4030_4032del, a maternally inherited in-frame deletion in exon 28. Both variants were first reported to be related to NIHF. PIEZO1 gene mutations, leading to an autosomal recessive congenital lymphatic dysplasia, which can present as NIHF and partial or complete resolution postnatally. In conclusion, WES can aid in the elucidation of the genetic cause of NIHF and has a positive effect on the assessment of prognosis.


Author(s):  
Nasim Rahmani ◽  
Saeed Talebi ◽  
Nakysa Hooman ◽  
Arezou Karamzade

Abstract Introduction Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is a rare disorder caused by perturbation in renal reabsorption of magnesium and calcium. Biallelic pathogenic variants either in gene CLDN16 or CLDN19 are responsible for molecular defects. Most patients with CLDN19 variants have been associated with ocular involvements (FHHNCOI). Patient and Methods We had a pediatric patient with hypercalciuric hypomagnesemia and bilateral chorioretinal atrophy. Metabolic profiling and radiology examinations were performed, in addition to whole exome sequencing (WES) used for detection of the causative variant. Results Analysis of WES revealed a homozygous c.223G > A (p.G75S) variant in CLDN19. MutationTaster and Combined Annotation-Dependent Depletion support its deleterious effect and SHERLOC's criteria put it in pathogenic category. This variant is previously reported in compound heterozygous state with other known pathogenic variant. As far as we know, it is the first report of this variant in homozygous state. Conclusion The variant found in our patient is pathogenic and compatible with FHHNCOI characteristics. WES is an advantageous tool in molecular diagnosis and finding genetic pathology of this disease. In line with other reports, ocular abnormalities are variable in patients with CLDN19 mutations, and chronic kidney disease and retinal damages must be considered in this group.


Children ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 503
Author(s):  
Hasret Ayyıldız Civan ◽  
Coleen Leitner ◽  
Iris Östreicher ◽  
Anna-Maria Schneider ◽  
Malte Cremer ◽  
...  

Tufting enteropathy (TE) is caused by recessive EPCAM mutations, and is characterized by intractable diarrhea of congenital onset and disorganization of enterocytes. TE generally requires parenteral nutrition (PN) during childhood or intestinal bowel transplantation. We report three unrelated families with six children with TE. We highlight the high rate of disease-related mortality. We observe adequate weight gain with PN, but low to normal and stunted body length, supporting the recent notion that a short stature might be intrinsic to TE. The diagnosis of TE in the index patients from each family was delayed for months to years, even when clinical data, duodenal biopsies, or exome sequencing data were obtained early on. We identified three novel pathogenic EPCAM variants: a deletion of exon 1 that removes the ATG initiation codon, a missense variant c.326A > G (p.Gln109Arg), and nonsense mutation c.429G > A (p.Trp143*) in a compound heterozygous state with the Mediterranean splice site variant c.556-14A > G (Tyr186Phefs*6). Homozygosity for p.Gln109Arg was associated with absent EPCAM staining, and compound heterozygosity for p.Trp143*/Tyr186Phefs*6 was associated with reduced EPCAM staining in duodenal biopsies; such observations might contribute to a genotype–phenotype correlation in larger cohorts of TE patients. This study extends the clinical and molecular spectrum of TE.


2021 ◽  
Vol 12 ◽  
Author(s):  
Allan Bayat ◽  
Manuela Pendziwiat ◽  
Ewa Obersztyn ◽  
Paula Goldenberg ◽  
Pia Zacher ◽  
...  

The two aims of this study were (i) to describe and expand the phenotypic spectrum of PIGT deficiency in affected individuals harboring the c.1582G>A; p.Val528Met or the c.1580A > G; p.Asn527Ser variant in either homozygous or compound heterozygous state, and (ii) to identify potential genotype-phenotype correlations and any differences in disease severity among individuals with and without the PIGT variants. The existing literature was searched to identify individuals with and without the two variants. A detailed phenotypic assessment was performed of 25 individuals (both novel and previously published) with the two PIGT variants. We compared severity of disease between individuals with and without these PIGT variants. Twenty-four individuals carried the PIGT variant Val528Met in either homozygous or compound heterozygous state, and one individual displayed the Asn527Ser variant in a compound heterozygous state. Disease severity in the individual with the Asn527Ser variant was compatible with that in the individuals harboring the Val528Met variant. While individuals without the Asn527Ser or Val528Met variant had focal epilepsy, profound developmental delay (DD), and risk of premature death, those with either of the two variants had moderate to severe DD and later onset of epilepsy with both focal and generalized seizures. Individuals homozygous for the Val528Met variant generally became seizure-free on monotherapy with antiepileptic drugs, compared to other PIGT individuals who were pharmaco-resistant. Two patients were diagnosed with myoclonic-atonic seizures, and a single patient was diagnosed with eyelid myoclonia. Our comprehensive analysis of this large cohort of previously published and novel individuals with PIGT variants broadens the phenotypical spectrum and shows that both Asn527Ser and Val528Met are associated with a milder phenotype and less severe outcome. Our data show that PIGT is a new candidate gene for myoclonic atonic epilepsy. Our genotype-phenotype correlation will be useful for future genetic counseling. Natural history studies of this mild spectrum of PIGT-related disorder may shed light on hitherto unknown aspects of this rare disorder.


2021 ◽  
Vol 5 (2) ◽  
Author(s):  
Yiran Liu ◽  
Xueyan Wang

Inherited renal tubular dysgenesis(RTD), a rare, autosomal recessive disorder is caused by mutations in the genes encoding components of the renin-angiotensin pathway: angiotensinogen(AGT), renin (REN), angiotensin-converting enzyme(ACE), and angiotensin ?? receptor type 1(AGTR1). It characterized by the absence or poor development of renal tubules, and associated with oligohydramnios, Potter sequence and neonatal death due to renal or respiratory failure. We report a family with two mutations in the coding region of the ACE gene: a nonsense mutation in exon4 (c.538C>T) and a frameshift deletion at nucleotide 3073 and nucleotide 3074 in exon20(c.3073_3074delTC). The mutations were in the compound heterozygous state causing disease, because each parent had their own  mutation.


Meta Gene ◽  
2021 ◽  
pp. 100905
Author(s):  
Giulia Ravasi ◽  
Sara Pelucchi ◽  
Francesco Canonico ◽  
Raffaella Mariani ◽  
Alberto Piperno

2021 ◽  
Vol 8 ◽  
pp. 2329048X2110307
Author(s):  
Aliya L. Frederick ◽  
Jennifer H. Yang ◽  
Sarah Schneider ◽  
Alexis Quade ◽  
Lucia Guidugli ◽  
...  

We present a case of a young child with a rare metabolic disorder whose clinical presentation resembled that of autoimmune myasthenia gravis. The differential diagnosis was expanded when autoantibody testing was negative and the patient did not respond to standard immunomodulatory therapies. Rapid whole genome sequencing identified 2 rare variants of uncertain significance in the SLC52A3 gene shown to be in compound heterozygous state after parental testing. Biallelic mutations in SLC52A3 are associated with Riboflavin Transporter Deficiency, which in its untreated form, results in progressive neurodegeneration and death. Supplementation with oral riboflavin has been shown to limit disease progression and improve symptoms in some patients. When the diagnosis is suspected, patients should be started on supplementation immediately while awaiting results from genetic studies.


Sign in / Sign up

Export Citation Format

Share Document