scholarly journals Improved genetic prediction of complex traits from individual-level data or summary statistics

2020 ◽  
Author(s):  
Qianqian Zhang ◽  
Florian Privé ◽  
Bjarni Vilhjálmsson ◽  
Doug Speed

At present, most tools for constructing genetic prediction models begin with the assumption that all genetic variants contribute equally towards the phenotype. However, this represents a sub-optimal model for how heritability is distributed across the genome. Here we construct prediction models for 14 phenotypes from the UK Biobank (200,000 individuals per phenotype) using four of the most popular prediction tools: lasso, ridge regression, Bolt-LMM and BayesR. When we improve the assumed heritability model, prediction accuracy always improves (i.e., for all four tools and for all 14 phenotypes). When we construct prediction models using individual-level data, the best-performing tool is Bolt-LMM; if we replace its default heritability model with the most realistic model currently available, the average proportion of phenotypic variance explained increases by 19% (s.d. 2), equivalent to increasing the sample size by about a quarter. When we construct prediction models using summary statistics, the best tool depends on the phenotype. Therefore, we develop MegaPRS, a summary statistic prediction tool for constructing lasso, ridge regression, Bolt-LMM and BayesR prediction models, that allows the user to specify the heritability model.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qianqian Zhang ◽  
Florian Privé ◽  
Bjarni Vilhjálmsson ◽  
Doug Speed

AbstractMost existing tools for constructing genetic prediction models begin with the assumption that all genetic variants contribute equally towards the phenotype. However, this represents a suboptimal model for how heritability is distributed across the genome. Therefore, we develop prediction tools that allow the user to specify the heritability model. We compare individual-level data prediction tools using 14 UK Biobank phenotypes; our new tool LDAK-Bolt-Predict outperforms the existing tools Lasso, BLUP, Bolt-LMM and BayesR for all 14 phenotypes. We compare summary statistic prediction tools using 225 UK Biobank phenotypes; our new tool LDAK-BayesR-SS outperforms the existing tools lassosum, sBLUP, LDpred and SBayesR for 223 of the 225 phenotypes. When we improve the heritability model, the proportion of phenotypic variance explained increases by on average 14%, which is equivalent to increasing the sample size by a quarter.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Adriaan van der Graaf ◽  
◽  
Annique Claringbould ◽  
Antoine Rimbert ◽  
Harm-Jan Westra ◽  
...  

Abstract Inference of causality between gene expression and complex traits using Mendelian randomization (MR) is confounded by pleiotropy and linkage disequilibrium (LD) of gene-expression quantitative trait loci (eQTL). Here, we propose an MR method, MR-link, that accounts for unobserved pleiotropy and LD by leveraging information from individual-level data, even when only one eQTL variant is present. In simulations, MR-link shows false-positive rates close to expectation (median 0.05) and high power (up to 0.89), outperforming all other tested MR methods and coloc. Application of MR-link to low-density lipoprotein cholesterol (LDL-C) measurements in 12,449 individuals with expression and protein QTL summary statistics from blood and liver identifies 25 genes causally linked to LDL-C. These include the known SORT1 and ApoE genes as well as PVRL2, located in the APOE locus, for which a causal role in liver was not known. Our results showcase the strength of MR-link for transcriptome-wide causal inferences.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Luke R. Lloyd-Jones ◽  
Jian Zeng ◽  
Julia Sidorenko ◽  
Loïc Yengo ◽  
Gerhard Moser ◽  
...  

Abstract Accurate prediction of an individual’s phenotype from their DNA sequence is one of the great promises of genomics and precision medicine. We extend a powerful individual-level data Bayesian multiple regression model (BayesR) to one that utilises summary statistics from genome-wide association studies (GWAS), SBayesR. In simulation and cross-validation using 12 real traits and 1.1 million variants on 350,000 individuals from the UK Biobank, SBayesR improves prediction accuracy relative to commonly used state-of-the-art summary statistics methods at a fraction of the computational resources. Furthermore, using summary statistics for variants from the largest GWAS meta-analysis (n ≈ 700, 000) on height and BMI, we show that on average across traits and two independent data sets that SBayesR improves prediction R2 by 5.2% relative to LDpred and by 26.5% relative to clumping and p value thresholding.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 130-130
Author(s):  
Yury Loika ◽  
Alexander Kulminski

Abstract The connections between genes and multifactorial polygenic age-related traits are not trivial due to complexity of metabolic networks in an organism, which were primarily adapted to maximize fitness at reproductive age in ancient environments. Given this complexity, pleiotropy in predisposition to complex traits appears to be common phenomenon. Identifying mechanisms of pleiotropic predisposition to multiple age-related traits can be a key factor in developing strategies for extending health-span and lifespan. Correlation between complex traits may be a factor shedding light on these mechanisms. Recently, we used an omnibus test leveraging correlation between multiple age-related traits to gain insights into pleiotropic predisposition to them. The analysis using individual-level data identified large number of new pleiotropic loci and highlighted a novel phenomenon of antagonistic genetic heterogeneity, which was characterized by antagonistic directions of genetic effects for directly correlated traits. Here, we demonstrate feasibility of our approach using summary statistics from univariate genome-wide (GW) association studies (GWAS). Our analysis focused on the results for high density lipoprotein cholesterol (HDL-C) and triglycerides (TG) from the Global Lipids Genetic Consortium, which reported 94 GW significant loci (p≤5×10-8). The traits’ correlation was estimated from the individual level data. Our approach identified 28 loci with pleiotropic predisposition to HDL-C and TG at p≤5×10-8, which did not attain univariate GW significance with either of these traits. Fifteen of them (53%) demonstrated antagonistic heterogeneity. These results show that our approach can be efficiently used in the analysis of summary statistics from published studies to identify novel pleiotropic loci.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (7) ◽  
pp. e1009697
Author(s):  
Geyu Zhou ◽  
Hongyu Zhao

Genetic prediction of complex traits has great promise for disease prevention, monitoring, and treatment. The development of accurate risk prediction models is hindered by the wide diversity of genetic architecture across different traits, limited access to individual level data for training and parameter tuning, and the demand for computational resources. To overcome the limitations of the most existing methods that make explicit assumptions on the underlying genetic architecture and need a separate validation data set for parameter tuning, we develop a summary statistics-based nonparametric method that does not rely on validation datasets to tune parameters. In our implementation, we refine the commonly used likelihood assumption to deal with the discrepancy between summary statistics and external reference panel. We also leverage the block structure of the reference linkage disequilibrium matrix for implementation of a parallel algorithm. Through simulations and applications to twelve traits, we show that our method is adaptive to different genetic architectures, statistically robust, and computationally efficient. Our method is available at https://github.com/eldronzhou/SDPR.


2020 ◽  
Author(s):  
Geyu Zhou ◽  
Hongyu Zhao

AbstractGenetic prediction of complex traits has great promise for disease prevention, monitoring, and treatment. The development of accurate risk prediction models is hindered by the wide diversity of genetic architecture across different traits, limited access to individual level data for training and parameter tuning, and the demand for computational resources. To overcome the limitations of the most existing methods that make explicit assumptions on the underlying genetic architecture and need a separate validation data set for parameter tuning, we develop a summary statistics-based nonparametric method that does not rely on specific parametric assumptions about genetic architecture and validation datasets to tune parameters. In our implementation, we refine the commonly used likelihood assumption to deal with the discrepancy between summary statistics and external reference panel. We also leverage the block structure of the reference linkage disequilibrium matrix for implementation of a parallel algorithm. Through simulations and applications to twelve traits, we show that our method is adaptive to different genetic architectures, statistically robust, and computationally efficient. Our method is available at https://github.com/eldronzhou/SDPR.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jisu Shin ◽  
Sang Hong Lee

AbstractGenetic variation in response to the environment, that is, genotype-by-environment interaction (GxE), is fundamental in the biology of complex traits and diseases. However, existing methods are computationally demanding and infeasible to handle biobank-scale data. Here, we introduce GxEsum, a method for estimating the phenotypic variance explained by genome-wide GxE based on GWAS summary statistics. Through comprehensive simulations and analysis of UK Biobank with 288,837 individuals, we show that GxEsum can handle a large-scale biobank dataset with controlled type I error rates and unbiased GxE estimates, and its computational efficiency can be hundreds of times higher than existing GxE methods.


2021 ◽  
Author(s):  
Duncan S Palmer ◽  
Wei Zhou ◽  
Liam Abbott ◽  
Nik Baya ◽  
Claire Churchhouse ◽  
...  

In classical statistical genetic theory, a dominance effect is defined as the deviation from a purely additive genetic effect for a biallelic variant. Dominance effects are well documented in model organisms. However, evidence in humans is limited to a handful of traits, particularly those with strong single locus effects such as hair color. We carried out the largest systematic evaluation of dominance effects on phenotypic variance in the UK Biobank. We curated and tested over 1,000 phenotypes for dominance effects through GWAS scans, identifying 175 loci at genome-wide significance correcting for multiple testing (P < 4.7 × 10-11). Power to detect non-additive loci is much lower than power to detect additive effects for complex traits: based on the relative effect sizes at genome-wide significant additive loci, we estimate a factor of 20-30 increase in sample size will be necessary to capture clear evidence of dominance similar to those currently observed for additive effects. However, these localised dominance hits do not extend to a significant aggregate contribution to phenotypic variance genome-wide. By deriving a version of LD-score regression to detect dominance effects tagged by common variation genome-wide (minor allele frequency > 0.05), we found no strong evidence of a contribution to phenotypic variance when accounting for multiple testing. Across the 267 continuous and 793 binary traits the median contribution was 5.73 × 10-4, with unbiased point estimates ranging from -0.261 to 0.131. Finally, we introduce dominance fine-mapping to explore whether the more rapid decay of dominance LD can be leveraged to find causal variants. These results provide the most comprehensive assessment of dominance trait variation in humans to date.


2017 ◽  
Author(s):  
Ronald de Vlaming ◽  
Magnus Johannesson ◽  
Patrik K.E. Magnusson ◽  
M. Arfan Ikram ◽  
Peter M. Visscher

AbstractLD-score (LDSC) regression disentangles the contribution of polygenic signal, in terms of SNP-based heritability, and population stratification, in terms of a so-called intercept, to GWAS test statistics. Whereas LDSC regression uses summary statistics, methods like Haseman-Elston (HE) regression and genomic-relatedness-matrix (GRM) restricted maximum likelihood infer parameters such as SNP-based heritability from individual-level data directly. Therefore, these two types of methods are typically considered to be profoundly different. Nevertheless, recent work has revealed that LDSC and HE regression yield near-identical SNP-based heritability estimates when confounding stratification is absent. We now extend the equivalence; under the stratification assumed by LDSC regression, we show that the intercept can be estimated from individual-level data by transforming the coefficients of a regression of the phenotype on the leading principal components from the GRM. Using simulations, considering various degrees and forms of population stratification, we find that intercept estimates obtained from individual-level data are nearly equivalent to estimates from LDSC regression (R2> 99%). An empirical application corroborates these findings. Hence, LDSC regression is not profoundly different from methods using individual-level data; parameters that are identified by LDSC regression are also identified by methods using individual-level data. In addition, our results indicate that, under strong stratification, there is misattribution of stratification to the slope of LDSC regression, inflating estimates of SNP-based heritability from LDSC regression ceteris paribus. Hence, the intercept is not a panacea for population stratification. Consequently, LDSC-regression estimates should be interpreted with caution, especially when the intercept estimate is significantly greater than one.


Sign in / Sign up

Export Citation Format

Share Document