scholarly journals Myomixer is expressed during embryonic and post-larval hyperplasia, muscle regeneration and fusion of myoblats in rainbow trout (Oncorhynchus mykiss)

2020 ◽  
Author(s):  
Miquel Perello-Amoros ◽  
Cécile Rallière ◽  
Joaquim Gutiérrez ◽  
Jean-Charles Gabillard

1.AbstractIn contrast to mice or zebrafish, trout exhibits post-larval muscle growth through hypertrophy and formation of new myofibers (hyperplasia). The muscle fibers are formed by the fusion of mononucleated cells (myoblasts) regulated by several muscle-specific proteins such as myomaker or myomixer. In this work, we identified a unique gene encoding a myomixer protein of 77 amino acids (aa) in the trout genome. Sequence analysis and phylogenetic tree, showed moderate conservation of the overall protein sequence across teleost fish (61% of aa identity between trout and zebrafish myomixer sequences). Nevertheless, the functionally essential motif, AxLyCxL is perfectly conserved in all studied sequences of vertebrates. Using in situ hybridization, we observed that myomixer was highly expressed in the embryonic myotome, particularly in the hyperplasic area. Moreover, myomixer remained readily expressed in white muscle of juvenile (1 and 20 g) although its expression decreased in mature fish. We also showed that myomixer is up-regulated during muscle regeneration and in vitro myoblasts fusion. Together, these data indicate that myomixer expression is consistently associated with the formation of new myofibers during somitogenesis, post-larval growth and muscle regeneration in trout.

2006 ◽  
Vol 290 (6) ◽  
pp. C1651-C1659 ◽  
Author(s):  
Brenda A. Bondesen ◽  
Stephen T. Mills ◽  
Grace K. Pavlath

Loss of muscle mass occurs with disease, injury, aging, and inactivity. Restoration of normal muscle mass depends on myofiber growth, the regulation of which is incompletely understood. Cyclooxygenase (COX)-2 is one of two isoforms of COX that catalyzes the synthesis of prostaglandins, paracrine hormones that regulate diverse physiological and pathophysiological processes. Previously, we demonstrated that the COX-2 pathway regulates early stages of myofiber growth during muscle regeneration. However, whether the COX-2 pathway plays a common role in adult myofiber growth or functions specifically during muscle regeneration is unknown. Therefore, we examined the role of COX-2 during myofiber growth following atrophy in mice. Muscle atrophy was induced by hindlimb suspension (HS) for 2 wk, followed by a reloading period, during which mice were treated with either the COX-2-selective inhibitor SC-236 (6 mg·kg−1·day−1) or vehicle. COX-2 protein was expressed and SC-236 attenuated myofiber growth during reloading in both soleus and plantaris muscles. Attenuated myofiber growth in the soleus was associated with both decreased myonuclear addition and decreased inflammation, whereas neither of these processes mediated the effects of SC-236 on plantaris growth. In addition, COX-2−/− satellite cells exhibited impaired activation/proliferation in vitro, suggesting direct regulation of muscle cell activity by COX-2. Together, these data suggest that the COX-2 pathway plays a common regulatory role during various types of muscle growth via multiple mechanisms.


2003 ◽  
Vol 93 (9) ◽  
pp. 1145-1152 ◽  
Author(s):  
Cathy Grevesse ◽  
Philippe Lepoivre ◽  
Mohamed Haïssam Jijakli

The PaEXG2 gene, encoding an exo-β-1,3-glucanase, was isolated from the biocontrol agent Pichia anomala strain K. PaEXG2 has the capacity for coding an acidic protein of 427 amino acids with a predicted molecular weight of 45.7 kDa, a calculated pI of 4.7, and one potential N-glycosylation site. PaEXG2 was disrupted by the insertion of the URA3 marker gene, encoding orotidine monophosphate decarboxylase in strain KU1, a uracil auxotroph derived from strain K. Strain KU1 showed inferior biocontrol activity and colonization of wounds on apples, compared to the prototrophic strain. Antagonism and colonization were recovered after the restoration of prototrophy by transformation with the URA3 gene. Integrative transformation was shown to be mostly ectopic in strain K descendants (only 4% of integration by homologous recombination). PaEXG2 disruption abolished all detectable extracellular exo-β-1,3-glucanase activity in vitro and in situ but did not affect biocontrol of Botrytis cinerea on wounded apples.


2005 ◽  
Vol 71 (11) ◽  
pp. 6578-6583 ◽  
Author(s):  
Bosung Ku ◽  
Jae-Cheol Jeong ◽  
Benjamin N. Mijts ◽  
Claudia Schmidt-Dannert ◽  
Jonathan S. Dordick

ABSTRACT The ispA gene encoding farnesyl pyrophosphate (FPP) synthase from Escherichia coli and the crtM gene encoding 4,4′-diapophytoene (DAP) synthase from Staphylococcus aureus were overexpressed and purified for use in vitro. Steady-state kinetics for FPP synthase and DAP synthase, individually and in sequence, were determined under optimized reaction conditions. For the two-step reaction, the DAP product was unstable in aqueous buffer; however, in situ extraction using an aqueous-organic two-phase system resulted in a 100% conversion of isopentenyl pyrophosphate and dimethylallyl pyrophosphate into DAP. This aqueous-organic two-phase system is the first demonstration of an in vitro carotenoid synthesis pathway performed with in situ extraction, which enables quantitative conversions. This approach, if extended to a wide range of isoprenoid-based pathways, could lead to the synthesis of novel carotenoids and their derivatives.


1992 ◽  
Vol 262 (2) ◽  
pp. R295-R304 ◽  
Author(s):  
C. D. Moyes ◽  
P. M. Schulte ◽  
P. W. Hochachka

Recovery from burst exercise in fish is very slow. Lactate conversion to glycogen occurs primarily within white muscle and must be fueled by mitochondrially produced ATP. In a parallel study we characterized the changes in tissue metabolites associated with burst exercise and recovery in rainbow trout (Oncorhynchus mykiss) white muscle. The present study examines whether the mitochondrial capacity to produce ATP may limit the rate of recovery of trout white muscle. The cost (ATP.min-1.g-1) of glycogen resynthesis (0.05 mumol lactate converted.min-1.g tissue-1) was compared with the mitochondrial capacity to produce ATP. The cost of recovery can be met by only 3.5% of the maximal mitochondrial capacity. In fact, during recovery trout white muscle mitochondria operate at a small fraction of their in vitro maximum. This capacity is suppressed in vivo by highly inhibitory ATP/ADP and limiting phosphate. The primary signal for increased ATP synthesis associated with recovery is not a change in ATP/ADP but probably phosphate, elevated because of phosphocreatine hydrolysis and adenylate catabolism in the purine nucleotide cycle. At low ADP availability and suboptimal phosphate (less than 5 mM), acidosis enhances respiration. At high respiratory rates mitochondrial pyruvate oxidation is sensitive to pyruvate concentration over the physiological range (apparent Michaelis constant = 35-40 microM). This sensitivity is lost at the low rates that approximate in vivo respiration. Changes in lactate do not affect the kinetics of pyruvate oxidation. Fatty acid oxidation may spare pyruvate and lactate for use in glyconeogenesis, primarily through allosteric inhibition of pyruvate dehydrogenase rather than covalent modification.


1995 ◽  
Vol 269 (4) ◽  
pp. R775-R780 ◽  
Author(s):  
S. Amer ◽  
J. A. Brown

Recent measurements of plasma arginine vasotocin (AVT) in teleost fish suggest circulating concentrations of 10(-10)-10(-12)M. Previous studies of the renal actions of AVT in vivo suggest both diuretic and antidiuretic effects, but at unknown circulating concentrations. We have investigated the renal actions of 10(-9) and 10(-11) M AVT in vitro using an in situ perfused kidney preparation of rainbow trout (oncorhynchus mykiss). AVT increased vascular resistance (56%), reduced perfusate flow (P < 0.001), and increased interrenal aortic pressure (P < 0.001). AVT resulted in dose-dependent decreases in urine flow rates, glomerular filtration rates, and tubular transport maxima for glucose. AVT at 10(-11) M reduced relative free water clearances (P < 0.01), but urine/plasma inulin ratios were unchanged, whereas 10(-9)M AVT reduced urine/plasma inulin ratios (P < 0.01) and increased relative free water clearances (P < 0.05). The filtering population of glomeruli was reduced by both 10(-11) and 10(-9)M AVT to approximately one-third of the glomeruli, and a similar population of arterially perfused but nonfiltering glomeruli emerged. These results demonstrate that physiological concentrations of AVT have potent glomerular antidiuretic action in the trout, reducing the number of functional glomeruli, and imply reduced individual nephron filtration rates.


2002 ◽  
Vol 68 (7) ◽  
pp. 3550-3559 ◽  
Author(s):  
Francisco J. Moralejo ◽  
Rosa Elena Cardoza ◽  
Santiago Gutierrez ◽  
Marta Lombraña ◽  
Francisco Fierro ◽  
...  

ABSTRACT Aspergillopepsin B was identified in culture broths of Aspergillus awamori by in situ detection of its proteolytic activity and by immunodetection with anti-aspergillopepsin B antibodies. Severe thaumatin degradation was observed after in vitro treatment of thaumatin with purified aspergillopepsin B. The pepB gene encoding aspergillopepsin B of A. awamori was cloned and characterized. It is located in chromosome IV of A. awamori, as shown by pulsed-field gel electrophoresis, and encodes a protein of 282 amino acids with high similarity to the aspergillopepsin B of Aspergillus niger var. macrosporus. The pepB gene is expressed at high rates as a monocistronic 1.0-kb transcript in media with casein at acidic pH values. An antisense cassette constructed by inserting the pepB gene in the antisense orientation downstream from the gpdA promoter resulted in a good level of antisense mRNA, as shown by reverse transcription-PCR. Partial silencing of the pepB gene by the antisense mRNA resulted in a 31% increase in thaumatin yield. However, significant residual degradation of thaumatin still occurred. To completely remove aspergillopepsin B, the pepB gene was deleted by double crossover. Two of the selected transformants lacked the endogenous pepB gene and did not form aspergillopepsin B. Thaumatin yields increased by between 45% in transformant APB 7/25 and 125% in transformant 7/36 with respect to the parental strain. Reduction of proteolytic degradation by gene silencing with antisense mRNA or total removal of the aspergillopepsin B by directed gene deletion was a very useful method for improving thaumatin production in A. awamori.


Blood ◽  
2009 ◽  
Vol 113 (14) ◽  
pp. 3182-3189 ◽  
Author(s):  
Anita Eckly ◽  
Catherine Strassel ◽  
Monique Freund ◽  
Jean-Pierre Cazenave ◽  
François Lanza ◽  
...  

Abstract Mutations in the MYH9 gene encoding nonmuscle myosin IIA lead to macrothrombocytopenia as observed in MYH9-related disorders. We used mice with megakaryocyte-restricted MYH9 inactivation to explore the role of myosin in thrombopoiesis. In situ, bone marrow MYH9Δ megakaryocytes were irregularly shaped, appearing leaky with poorly defined limits. The demarcation membranes were abnormally organized and poorly developed, pointing to an insufficient reservoir for the future formation of platelets. The cytoskeletal-rich peripheral zone was lacking due to the absence of the myosin filament network that normally surrounds the granular zone in wild-type cells. In vitro studies of cultured cells showed that MYH9Δ megakaryocytes were unable to form stress fibers upon adhesion to collagen, suggesting that the leaky shape results from defects in internal tension and anchorage to the extracellular environment. Surprisingly, the proportion of cells extending proplatelets was increased in MYH9Δ megakaryocytes and the proplatelet buds were larger. Overall, this study provides evidence for a role of myosin in different steps of megakaryocyte development through its participation in the maintenance of cell shape, formation and organization of the demarcation membranes and the peripheral zone, anchorage to the extracellular matrix, and proplatelet formation.


Sign in / Sign up

Export Citation Format

Share Document