scholarly journals Synonymization of the male-based ant genus Phaulomyrma (Hymenoptera, Formicidae) with Leptanilla based upon Bayesian total-evidence phylogenetic inference

2020 ◽  
Author(s):  
Zachary H. Griebenow

Abstract.Although molecular data have proven indispensable in confidently resolving the phylogeny of many clades across the tree of life, these data may be inaccessible for certain taxa. The resolution of taxonomy in the ant subfamily Leptanillinae is made problematic by the absence of DNA sequence data for leptanilline taxa that are known only from male specimens, including the monotypic genus Phaulomyrma Wheeler & Wheeler. Focusing upon the considerable diversity of undescribed male leptanilline morphospecies, the phylogeny of 35 putative morphospecies sampled from across the Leptanillinae, plus an outgroup, is inferred from 11 nuclear loci and 41 discrete male morphological characters using a Bayesian total-evidence framework, with Phaulomyrma represented by morphological data only. Based upon the results of this analysis Phaulomyrma is synonymized with Leptanilla Emery, and male-based diagnoses for Leptanilla that are grounded in phylogeny are provided, under both broad and narrow circumscriptions of that genus. This demonstrates the potential utility of a total-evidence approach in inferring the phylogeny of rare extant taxa for which molecular data are unavailable and begins a long-overdue systematic revision of the Leptanillinae that is focused on male material.

2021 ◽  
Author(s):  
Zachary H. Griebenow

Although molecular data have proven indispensable in confidently resolving the phylogeny of many clades across the tree of life, these data may be inaccessible for certain taxa. The resolution of taxonomy in the ant subfamily Leptanillinae is made problematic by the absence of DNA sequence data for leptanilline taxa that are known only from male specimens, including the monotypic genus Phaulomyrma Wheeler & Wheeler. Focusing upon the considerable diversity of undescribed male leptanilline morphospecies, the phylogeny of 35 putative morphospecies sampled from across the Leptanillinae, plus an outgroup, is inferred from 11 nuclear loci and 41 discrete male morphological characters using a Bayesian total-evidence framework, with Phaulomyrma represented by morphological data only. Based upon the results of this analysis Phaulomyrma is synonymised with Leptanilla Emery, and male-based diagnoses for Leptanilla that are grounded in phylogeny are provided, under both broad and narrow circumscriptions of that genus. This demonstrates the potential utility of a total-evidence approach in inferring the phylogeny of rare extant taxa for which molecular data are unavailable and begins a long-overdue systematic revision of the Leptanillinae that is focused on male material.


Phytotaxa ◽  
2021 ◽  
Vol 478 (2) ◽  
pp. 179-200
Author(s):  
SHABIR A. RATHER ◽  
WANG SHU ◽  
MAYANK DHAR DWIVEDI ◽  
CHANG ZHAOYANG

In this study, we explored the evolutionary history and taxonomic treatment of the Caragana opulens complex taking information from morphological and molecular data. The complex consists of three species, C. opulens, C. licentiana and C. kansuensis. Moreover, the morphological characters currently used to differentiate the species present in the complex have been found insignificant and inconsistent and do not help diagnose the species. For the present study, we investigated its range and sampled 139 accessions from the different populations of the genus Caragana and 17 accessions of the complex. DNA sequence data from one nrDNA ITS and one cpDNA trnH-psbA loci were sequenced and analyzed using Maximum Likelihood and Bayesian methods. The resulting phylogenies were congruent in topologies. Based on morphological and molecular data, it is concluded that all three species of the complex are one of the same with significant morphological variations. Hence C. opulens is accepted as the correct name along with C. licentiana and C. kansuensis as synonyms.


2009 ◽  
Vol 34 (3) ◽  
pp. 580-594 ◽  
Author(s):  
Anthony R. Magee ◽  
Ben-Erik van Wyk ◽  
Patricia M. Tilney ◽  
Stephen R. Downie

Generic circumscriptions and phylogenetic relationships of the Cape genera Capnophyllum, Dasispermum, and Sonderina are explored through parsimony and Bayesian inference analyses of nrDNA ITS and cpDNA rps16 intron sequences, morphology, and combined molecular and morphological data. The relationship of these genera with the North African genera Krubera and Stoibrax is also assessed. Analyses of both molecular data sets place Capnophyllum, Dasispermum, Sonderina, and the only southern African species of Stoibrax (S. capense) within the newly recognized Lefebvrea clade of tribe Tordylieae. Capnophyllum is strongly supported as monophyletic and is distantly related to Krubera. The monotypic genus Dasispermum and Stoibrax capense are embedded within a paraphyletic Sonderina. This complex is distantly related to the North African species of Stoibrax in tribe Apieae, in which the type species, Stoibrax dichotomum, occurs. Consequently, Dasispermum is expanded to include both Sonderina and Stoibrax capense. New combinations are formalized for Dasispermum capense, D. hispidum, D. humile, and D. tenue. An undescribed species from the Tanqua Karoo in South Africa is also closely related to Capnophyllum and the Dasispermum–Sonderina complex. The genus Scaraboides is described herein to accommodate the new species, S. manningii. This monotypic genus shares the dorsally compressed fruit and involute marginal wings with Capnophyllum, but is easily distinguished by its erect branching habit, green leaves, scabrous umbels, and fruit with indistinct median and lateral ribs, additional solitary vittae in each marginal wing, and parallel, closely spaced commissural vittae. Despite the marked fruit similarities with Capnophyllum, analyses of DNA sequence data place Scaraboides closer to the Dasispermum–Sonderina complex, with which it shares the erect habit, green (nonglaucous) leaves, and scabrous umbels.


Zootaxa ◽  
2009 ◽  
Vol 1991 (1) ◽  
pp. 28-42 ◽  
Author(s):  
T. HEATH OGDEN ◽  
JONATHAN T. OSBORNE ◽  
LUKE M. JACOBUS ◽  
MICHAEL F. WHITING

This study represents the first combined molecular and morphological analysis for the mayfly family Ephemerellidae (Ephemeroptera), with a focus on the relationships of genera and species groups of the subfamily Ephemerellinae. The phylogeny was constructed based on DNA sequence data from 3 nuclear (18S rDNA, 28S rDNA, histone H3) and 2 mitochondrial (12S rDNA, 16S rDNA) genes, and 23 morphological characters. Taxon sampling for Ephemerellidae included exemplars from all 25 extant genus groups and additional representatives from those genera with the highest diversity. Ephemerellidae appears to consist of three major clades. Ephemerella, the largest genus of Ephemerellidae, and Serratella were not supported as monophyletic, and each had representatives in two of the three major clades. However, the genera Drunella and Cincticostella were supported as monophyletic. Lineages strongly supported as monophyletic include a grouping of the Timpanoginae genera Timpanoga, Dannella, Dentatella and Eurylophella, and groupings of the Ephemerellinae genera Torleya, Hyrtanella and Crinitella and the genera Kangella, Uracanthella and Teloganopsis. The placement of the Timpanoginae genus Attenella fell within Ephemerellinae, based on molecular and combined data, but it grouped with other Timpanoginae based on morphological data alone. Further study and analysis of Ephemerellidae morphology is needed, and classification should be revised, if it is to reflect phylogenetic relationships.


Zootaxa ◽  
2007 ◽  
Vol 1423 (1) ◽  
pp. 1-26 ◽  
Author(s):  
JEFFREY H. SKEVINGTON ◽  
CHRISTIAN KEHLMAIER ◽  
GUNILLA STÅHLS

Sequence data from 658 base pairs of mitochondrial cytochrome c oxidase I (cox1) were analysed for 28 described species of Pipunculidae (Diptera) in an effort to test the concept of DNA Barcoding on this family. Two recently revised but distantly related pipunculid lineages with presumed different evolutionary histories were used for the test (Clistoabdominalis Skevington, 2001 and Nephrocerus Zetterstedt, 1838). An effort was made to test the concept using sister taxa and morphologically similar sibling species swarms in these two genera. Morphological species concepts for Clistoabdominalis taxa were either supported by cox1 data or found to be too broad. Most of the discordance could be accounted for after reassessing morphological characters. In these cases, the molecular data were invaluable in assisting taxonomic decision-making. The radiation of Nearctic species of Nephrocerus could not be diagnosed using cox1. The ability of cox1 to recover phylogenetic signal was also tested on Clistoabdominalis. Morphological data for Clistoabdominalis were combined with the molecular data set. The pipunculid phylogeny from molecular data closely resembles the published phylogeny based on morphology. Partitioned Bremer support is used to localize areas of conflict between the datasets.


Zootaxa ◽  
2004 ◽  
Vol 629 (1) ◽  
pp. 1 ◽  
Author(s):  
MARIAM LEKVEISHVILI ◽  
HANS KLOMPEN

Phylogenetic relationships among the families in the infraorder Sejina and the position of Sejina relative to other infraorders of Mesostigmata are re-examined based on molecular and morphological data. Data sets included DNA sequence data for complete 18S, EF-1 , partial CO1genes, and 69 morphological characters. The two families of Heterozerconina consistently group within Sejina, and we propose to synonymize Heterozerconina with Sejina (Sejina s.l). Microgyniina is not the closest relative of Sejina. Rather, Sejina s.l. most often groups with Gamasina. Uropodellidae and Ichthyostomatogasteridae are sister groups and this lineage forms the sister group to Discozerconidae plus Heterozerconidae. Overall, we recognize 5 families within Sejina: Uropodellidae, Ichthyostomatogasteridae, Sejidae, Discozerconidae, and Heterozerconidae.


Diversity ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 143 ◽  
Author(s):  
Albert Chen ◽  
Noor D. White ◽  
Roger B.J. Benson ◽  
Michael J. Braun ◽  
Daniel J. Field

Strisores is a clade of neoavian birds that include diurnal aerial specialists such as swifts and hummingbirds, as well as several predominantly nocturnal lineages such as nightjars and potoos. Despite the use of genome-scale molecular datasets, the phylogenetic interrelationships among major strisorean groups remain controversial. Given the availability of next-generation sequence data for Strisores and the clade’s rich fossil record, we reassessed the phylogeny of Strisores by incorporating a large-scale sequence dataset with anatomical data from living and fossil strisoreans within a Bayesian total-evidence framework. Combined analyses of molecular and morphological data resulted in a phylogenetic topology for Strisores that is congruent with the findings of two recent molecular phylogenomic studies, supporting nightjars (Caprimulgidae) as the extant sister group of the remainder of Strisores. This total-evidence framework allowed us to identify morphological synapomorphies for strisorean clades previously recovered using molecular-only datasets. However, a combined analysis of molecular and morphological data highlighted strong signal conflict between sequence and anatomical data in Strisores. Furthermore, simultaneous analysis of molecular and morphological data recovered differing placements for some fossil taxa compared with analyses of morphological data under a molecular scaffold, highlighting the importance of analytical decisions when conducting morphological phylogenetic analyses of taxa with molecular phylogenetic data. We suggest that multiple strisorean lineages have experienced convergent evolution across the skeleton, obfuscating the phylogenetic position of certain fossils, and that many distinctive specializations of strisorean subclades were acquired early in their evolutionary history. Despite this apparent complexity in the evolutionary history of Strisores, our results provide fossil support for aerial foraging as the ancestral ecological strategy of Strisores, as implied by recent phylogenetic topologies derived from molecular data.


2020 ◽  
Vol 86 (4) ◽  
pp. 323-341 ◽  
Author(s):  
Trond R Oskars ◽  
Manuel António E Malaquias

ABSTRACT The genus Bakawan includes species of haminoeid snails associated with mangrove habitats and mud flats in the Indo-West Pacific. Here, we revise the diversity and systematics of the genus Bakawan based on our recent molecular phylogeny (Oskars & Malaquias, 2019) and detailed analysis of morphological characters. We examined a range of morphological characters (the shells, external morphology of the animal, jaw, radula, gizzard plate and male reproductive system) using light and scanning electron microscopy. We also carried out a species delimitation analysis (we used the automatic barcode gap discovery method) based on cytochrome c oxidase subunit I DNA sequence data. Four distinct species were recognized: Bakawan rotundata (A. Adams, 1850), which is the type species of the genus and ranges from the eastern Indian Ocean to the western Pacific; B. fusca (A. Adams, 1850), currently known only from the Philippines; and two species new to science, B. puti n. sp., known only from the Philippines, and B. hedleyi n. sp., restricted to tropical eastern Australia.


2005 ◽  
Vol 272 (1572) ◽  
pp. 1577-1586 ◽  
Author(s):  
Niklas Wahlberg ◽  
Michael F Braby ◽  
Andrew V.Z Brower ◽  
Rienk de Jong ◽  
Ming-Min Lee ◽  
...  

Phylogenetic relationships among major clades of butterflies and skippers have long been controversial, with no general consensus even today. Such lack of resolution is a substantial impediment to using the otherwise well studied butterflies as a model group in biology. Here we report the results of a combined analysis of DNA sequences from three genes and a morphological data matrix for 57 taxa (3258 characters, 1290 parsimony informative) representing all major lineages from the three putative butterfly super-families (Hedyloidea, Hesperioidea and Papilionoidea), plus out-groups representing other ditrysian Lepidoptera families. Recently, the utility of morphological data as a source of phylogenetic evidence has been debated. We present the first well supported phylogenetic hypothesis for the butterflies and skippers based on a total-evidence analysis of both traditional morphological characters and new molecular characters from three gene regions ( COI , EF-1α and wingless ). All four data partitions show substantial hidden support for the deeper nodes, which emerges only in a combined analysis in which the addition of morphological data plays a crucial role. With the exception of Nymphalidae, the traditionally recognized families are found to be strongly supported monophyletic clades with the following relationships: (Hesperiidae+(Papilionidae+(Pieridae+(Nymphalidae+(Lycaenidae+Riodinidae))))). Nymphalidae is recovered as a monophyletic clade but this clade does not have strong support. Lycaenidae and Riodinidae are sister groups with strong support and we suggest that the latter be given family rank. The position of Pieridae as the sister taxon to nymphalids, lycaenids and riodinids is supported by morphology and the EF-1α data but conflicted by the COI and wingless data. Hedylidae are more likely to be related to butterflies and skippers than geometrid moths and appear to be the sister group to Papilionoidea+Hesperioidea.


Nematology ◽  
2017 ◽  
Vol 19 (3) ◽  
pp. 351-374 ◽  
Author(s):  
Kerrie A. Davies ◽  
Weimin Ye ◽  
Barbara Center ◽  
Natsumi Kanzaki ◽  
Faerlie Bartholomaeus ◽  
...  

Aphelenchoidid nematodes were collected from the sycones ofFicussubgenusPharmacosyceafrom Central America. Two new species ofFicophaguswere recovered, and are described herein asF. maximasp. n. andF. yoponensissp. n. fromFicus maximaandF. yoponensis, respectively. They are differentiated from other species of the genus by a combination of morphological characters including having C-shaped females and spiral males, EP opening close to the lips, a short to long post-uterine sac, spicule characters, three pairs of subventral caudal papillae, DNA sequence data, biogeographical range, and host wasp andFicusspecies affiliation. The new species are differentiated from each other by spicule characters, length of the post-uterine sac, spermatheca shape, and female tail shape. In addition, three morphospecies were collected from sycones ofFicus glabrata,F. insipidaandF. tonduzii, respectively. Their morphological descriptions are presented but these taxa are not formally named as they currently lack molecular data.


Sign in / Sign up

Export Citation Format

Share Document