scholarly journals Iodoacetic acid disrupts mouse oocyte maturation by inducing oxidative stress and spindle abnormalities

2020 ◽  
Author(s):  
Xiaofei Jiao ◽  
Andressa Gonsioroski ◽  
Jodi A Flaws ◽  
Huanyu Qiao

AbstractDisinfection by-products (DBPs) are compounds produced during the water disinfection process. Iodoacetic acid (IAA) is one of the unregulated DBPs in drinking water, with potent cytotoxicity and genotoxicity in animals. However, whether IAA has toxic effects on oocyte maturation remains unclear. Here, we show that IAA exposure resulted in metaphase I (MI) arrest and polar-body-extrusion failure in mouse oocytes, indicating that IAA had adverse effects on mouse oocyte maturation in vitro. Particularly, IAA treatment caused abnormal spindle assembly and chromosome misalignment. Previous studies reported that IAA is a known inducer of oxidative stress in non-germline cells. Correspondingly, we found that IAA exposure increased the reactive oxygen species (ROS) levels in oocytes in a dose-dependent manner, indicating IAA exposure could induce oxidative stress in oocytes. Simultaneously, DNA damage was also elevated in the nuclei of these IAA-exposed mouse oocytes, evidenced by increased γ-H2AX focus number. In addition, the un-arrested oocytes entered metaphase II (MII) with severe defects in spindle morphologies and chromosome alignment after 14-hour IAA treatment. An antioxidant, N-acetyl-L-cysteine (NAC), reduced the elevated ROS level and restored the meiotic maturation in the IAA. exposed oocytes, which indicates that IAA-induced maturation failure in oocytes was mainly mediated by oxidative stress. Collectively, our results indicate that IAA exposure interfered with mouse oocyte maturation by elevating ROS levels, disrupting spindle assembly, inducing DNA damage, and causing MI arrest.

2021 ◽  
Author(s):  
Xiaofei Jiao ◽  
Ning Liu ◽  
Yiding Xu ◽  
Huanyu Qiao

Perfluorononanoic acid (PFNA), a member of PFAS, is frequently detected in human blood and tissues, even in follicular fluid of women. The exposure of PFNA, but not PFOA and PFOS, is positively correlated with miscarriage and increased time to pregnancy. Toxicological studies indicated that PFNA exposure is associated with immunotoxicity, hepatotoxicity, developmental toxicity, and reproductive toxicity in animals. However, there is little information regarding the toxic effects of PFNA on oocyte maturation. In this study, we investigated the toxic effects of PFNA exposure on mouse oocyte maturation in vitro. Our results showed that 600 μM PFNA significantly inhibited germinal vesicle breakdown (GVBD) and polar body extrusion (PBE) in mouse oocytes. Our further study revealed that PFNA induced abnormal metaphase I (MI) spindle assembly, evidenced by malformed spindles and mislocalization of p-ERK1/2 in PFNA-treated oocytes. We also found that PFNA induced abnormal mitochondrial distribution and increased mitochondrial membrane potential. Consequently, PFNA increased reactive oxygen species (ROS) levels, leading to oxidative stress, DNA damage, and eventually early-stage apoptosis in oocytes. In addition, after 14 h culture, PFNA disrupted the formation of metaphase II (MII) spindle in most PFNA-treated oocytes with polar bodies. Collectively, our results indicate that PFNA interferes with oocyte maturation in vitro via disrupting spindle assembly, damaging mitochondrial functions, and inducing oxidative stress, DNA damage, and early-stage apoptosis.


Author(s):  
Yue Wang ◽  
Chun-Hua Xing ◽  
Hao-Lin Zhang ◽  
Zhen-Nan Pan ◽  
Shao-Chen Sun

Abstract Mammalian oocyte quality is critical for fertilization and early embryo development. The type B trichothecene nivalenol (NIV) is a mycotoxin produced by Fusarium oxysporum, and it is commonly found with deoxynivalenol in contaminated food or feed. NIV has been shown to affect the immune system and female reproductive system, cause emesis and growth retardation. Here, we investigated the toxicity of NIV on mouse oocyte quality, as well as the protective effects of melatonin on the NIV-exposed oocytes. We found NIV exposure caused meiotic arrest and further induced the failure of polar body extrusion in mouse oocytes. Transcriptome analysis data showed that NIV exposure altered the expression of multiple pathway-related genes in oocytes, indicating its widely toxicity on oocyte maturation. Based on the RNA-seq data we showed that NIV exposure induced oxidative stress and caused DNA damage in oocytes. Besides, autophagy and early apoptosis were also found in NIV-exposed oocytes. Treatment with melatonin significantly ameliorated these defects through its effects on ROS level. Thus, our results demonstrated that exposure to NIV affected oocyte quality and melatonin treatment could reduce the defects caused by NIV in mouse oocytes.


Cell Division ◽  
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ming-Hong Sun ◽  
Lin-Lin Hu ◽  
Chao-Ying Zhao ◽  
Xiang Lu ◽  
Yan-Ping Ren ◽  
...  

Abstract Background Ral family is a member of Ras-like GTPase superfamily, which includes RalA and RalB. RalA/B play important roles in many cell biological functions, including cytoskeleton dynamics, cell division, membrane transport, gene expression and signal transduction. However, whether RalA/B involve into the mammalian oocyte meiosis is still unclear. This study aimed to explore the roles of RalA/B during mouse oocyte maturation. Results Our results showed that RalA/B expressed at all stages of oocyte maturation, and they were enriched at the spindle periphery area after meiosis resumption. The injection of RalA/B siRNAs into the oocytes significantly disturbed the polar body extrusion, indicating the essential roles of RalA/B for oocyte maturation. We observed that in the RalA/B knockdown oocytes the actin filament fluorescence intensity was significantly increased at the both cortex and cytoplasm, and the chromosomes were failed to locate near the cortex, indicating that RalA/B regulate actin dynamics for spindle migration in mouse oocytes. Moreover, we also found that the Golgi apparatus distribution at the spindle periphery was disturbed after RalA/B depletion. Conclusions In summary, our results indicated that RalA/B affect actin dynamics for chromosome positioning and Golgi apparatus distribution in mouse oocytes.


2020 ◽  
Vol 40 (10) ◽  
Author(s):  
Pan Yuan ◽  
Li Zhou ◽  
Xiaona Zhang ◽  
Lan Yao ◽  
Jun Ning ◽  
...  

Abstract Oocyte maturation is a prerequisite for successful fertilization and embryo development. Incomplete oocyte maturation can result in infertility. Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) has been found to be implicated in oocyte maturation and embryo development. However, the cellular and molecular mechanisms of UCH-L1 underlying oocyte maturation have not been fully elucidated. In the present study, we observed that the introduction of UCH-L1 inhibitor LDN-57444 suppressed first polar body extrusion during mouse oocyte maturation. The inhibition of UCH-L1 by LDN-57444 led to the notable increase in reactive oxygen species (ROS) level, conspicuous reduction in glutathione (GSH) content and mitochondrial membrane potential (MMP), and blockade of spindle body formation. As a conclusion, UCH-L1 inhibitor LDN-57444 suppressed mouse oocyte maturation by improving oxidative stress, attenuating mitochondrial function, curbing spindle body formation and down-regulating extracellular signal-related kinases (ERK1/2) expression, providing a deep insight into the cellular and molecular basis of UCH-L1 during mouse oocyte maturation.


2021 ◽  
Vol 268 ◽  
pp. 115601
Author(s):  
Xiaofei Jiao ◽  
Andressa Gonsioroski ◽  
Jodi A. Flaws ◽  
Huanyu Qiao

2020 ◽  
Vol 21 (4) ◽  
pp. 1220
Author(s):  
Seiki Haraguchi ◽  
Mitsumi Ikeda ◽  
Satoshi Akagi ◽  
Yuji Hirao

The signal transducer and activator of transcription 3 (Stat3) is activated upon phosphorylation at Y705 (pStat3) and serves the dual function of signal transduction and transcription activation. Our previous study suggested that pStat3 is functional during oocyte maturation when transcription is silenced. Therefore, we speculated that pStat3 serves other functions. Immunocytochemical analysis revealed that pStat3 emerges at microtubule asters and spindle and is subsequently localized at the spindle poles along with pericentrin during mouse oocyte maturation. Both Stat3 and pStat3 proteins were detected in conditionally knocked out Stat3−/− mouse oocytes. pStat3 localization was the same in Stat3+/+ and Stat3−/− oocytes, and oocyte maturation proceeded normally, suggesting that pStat3 was still functional. Furthermore, the treatment of oocytes with the Stat3-specific inhibitors stattic and BP-1-102 or anti-pStat3 antibody led to significantly abnormal spindle assembly and chromosome mislocation in a dose-dependent manner, and pStat3 was either absent or improperly localized in these oocytes. Moreover, the development of pre-implantation stage embryos derived from inhibitor-treated oocytes was significantly hampered following in vitro fertilization. These findings indicate a novel function of pStat3 in spindle assembly.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5111 ◽  
Author(s):  
Yujie Lu ◽  
Yue Zhang ◽  
Jia-Qian Liu ◽  
Peng Zou ◽  
Lu Jia ◽  
...  

Background Aflatoxin B1 (AFB1), deoxynivalenol (DON), HT-2, ochratoxin A (OTA), zearalenone (ZEA) are the most common mycotoxins that are found in corn-based animal feed which have multiple toxic effects on animals and humans. Previous studies reported that these mycotoxins impaired mammalian oocyte quality. However, the effective concentrations of mycotoxins to animal oocytes were different. Methods In this study we aimed to compare the sensitivity of mouse and porcine oocytes to AFB1, DON, HT-2, OTA, and ZEA for mycotoxin research. We adopted the polar body extrusion rate of mouse and porcine oocyte as the standard for the effects of mycotoxins on oocyte maturation. Results and Discussion Our results showed that 10 μM AFB1 and 1 μM DON significantly affected porcine oocyte maturation compared with 50 μM AFB1 and 2 μM DON on mouse oocytes. However, 10 nM HT-2 significantly affected mouse oocyte maturation compared with 50 nM HT-2 on porcine oocytes. Moreover, 5 μM OTA and 10 μM ZEA significantly affected porcine oocyte maturation compared with 300 μM OTA and 50 μM ZEA on mouse oocytes. In summary, our results showed that porcine oocytes were more sensitive to AFB1, DON, OTA, and ZEA than mouse oocytes except HT-2 toxin.


2020 ◽  
Vol 26 (9) ◽  
pp. 689-701
Author(s):  
Ahmed Z Balboula ◽  
Karen Schindler ◽  
Tomoya Kotani ◽  
Manabu Kawahara ◽  
Masashi Takahashi

Abstract As the age of child-bearing increases and correlates with infertility, cryopreservation of female gametes is becoming common-place in ART. However, the developmental competence of vitrified oocytes has remained low. The underlying mechanisms responsible for reduced oocyte quality post-vitrification are largely unknown. Mouse cumulus–oocyte complexes were vitrified using a cryoloop technique and a mixture of dimethylsulphoxide, ethylene glycol and trehalose as cryoprotectants. Fresh and vitrified/thawed oocytes were compared for chromosome alignment, spindle morphology, kinetochore-microtubule attachments, spindle assembly checkpoint (SAC) and aneuploidy. Although the majority of vitrified oocytes extruded the first polar body (PB), they had a significant increase of chromosome misalignment, abnormal spindle formation and aneuploidy at metaphase II. In contrast to controls, vitrified oocytes extruded the first PB in the presence of nocodazole and etoposide, which should induce metaphase I arrest in a SAC-dependent manner. The fluorescence intensity of mitotic arrest deficient 2 (MAD2), an essential SAC protein, at kinetochores was reduced in vitrified oocytes, indicating that the SAC is weakened after vitrification/thawing. Furthermore, we found that vitrification-associated stress disrupted lysosomal function and stimulated cathepsin B activity, with a subsequent activation of caspase 3. MAD2 localization and SAC function in vitrified oocytes were restored upon treatment with a cathepsin B or a caspase 3 inhibitor. This study was conducted using mouse oocytes, therefore confirming these results in human oocytes is a prerequisite before applying these findings in IVF clinics. Here, we uncovered underlying molecular pathways that contribute to an understanding of how vitrification compromises oocyte quality. Regulating these pathways will be a step toward improving oocyte quality post vitrification and potentially increasing the efficiency of the vitrification program.


Author(s):  
Tianjie Li ◽  
Changyu Liu ◽  
Xiumei Zhen ◽  
Yang Yu ◽  
Jie Qiao

Abstract Actinomycin D (ActD) has been considered as one of the most effective and safe chemotherapeutic medications for treating a number of cancers. Although ActD has been used in the treatment of gynecological tumors and pediatric tumors for more than 50 years, the toxic effects of ActD on mammalian oocytes remain unknown. In this study, the influence of ActD on mouse and human oocyte maturation and the possible mechanisms were investigated. Notably, ActD inhibited oocyte maturation and arrested oocytes at the metaphase I (MI) stage in a dose-dependent manner. In addition, ActD arrested oocyte maturation when the oocytes were treated at different successive stages, including the germinal vesicle (GV), germinal vesicle breakdown, and MI stages. In ActD-treated oocytes, disordered chromosome condensation and irregular spindle assembly occurred, resulting in incomplete chromosome segregation and oocytes arresting at the MI phase; these results possibly occurred because ActD triggered the formation of reactive oxygen species, resulting in DNA damage and decreased ATP in mouse GV oocytes. Besides, in vivo treatment with ActD also inhibited mouse oocyte maturation. Similar effects were seen in human oocytes. Collectively, our results indicated that ActD exposure disrupted oocyte maturation by increasing DNA damage, which is a finding that might help with optimizing future methods for female fertility preservation before undergoing chemotherapy.


2013 ◽  
Vol 19 (5) ◽  
pp. 1364-1373 ◽  
Author(s):  
Jie Zhao ◽  
Lu Wang ◽  
Hong-Xia Zhou ◽  
Li Liu ◽  
Angeleem Lu ◽  
...  

AbstractClathrin heavy chain 1 (CLTC) has been considered a “moonlighting protein” which acts in membrane trafficking during interphase and in stabilizing spindle fibers during mitosis. However, its roles in meiosis, especially in mammalian oocyte maturation, remain unclear. This study investigated CLTC expression and function in spindle formation and chromosome congression during mouse oocyte meiotic maturation. Our results showed that the expression level of CLTC increased after germinal vesicle breakdown (GVBD) and peaked in the M phase. Immunostaining results showed CLTC distribution throughout the cytoplasm in a cell cycle-dependent manner. Appearance and disappearance of CLTC along with β-tubulin (TUBB) could be observed during spindle dynamic changes. To explore the relationship between CLTC and microtubule dynamics, oocytes at metaphase were treated with taxol or nocodazole. CLTC colocalized with TUBB at the enlarged spindle and with cytoplasmic asters after taxol treatment; it disassembled and distributed into the cytoplasm along with TUBB after nocodazole treatment. Disruption of CLTC function using stealth siRNA caused a decreased first polar body extrusion rate and extensive spindle formation and chromosome congression defects. Taken together, these results show that CLTC plays an important role in spindle assembly and chromosome congression through a microtubule correlation mechanism during mouse oocyte maturation.


Sign in / Sign up

Export Citation Format

Share Document