scholarly journals UCH-L1 inhibitor LDN-57444 hampers mouse oocyte maturation by regulating oxidative stress and mitochondrial function and reducing ERK1/2 expression

2020 ◽  
Vol 40 (10) ◽  
Author(s):  
Pan Yuan ◽  
Li Zhou ◽  
Xiaona Zhang ◽  
Lan Yao ◽  
Jun Ning ◽  
...  

Abstract Oocyte maturation is a prerequisite for successful fertilization and embryo development. Incomplete oocyte maturation can result in infertility. Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) has been found to be implicated in oocyte maturation and embryo development. However, the cellular and molecular mechanisms of UCH-L1 underlying oocyte maturation have not been fully elucidated. In the present study, we observed that the introduction of UCH-L1 inhibitor LDN-57444 suppressed first polar body extrusion during mouse oocyte maturation. The inhibition of UCH-L1 by LDN-57444 led to the notable increase in reactive oxygen species (ROS) level, conspicuous reduction in glutathione (GSH) content and mitochondrial membrane potential (MMP), and blockade of spindle body formation. As a conclusion, UCH-L1 inhibitor LDN-57444 suppressed mouse oocyte maturation by improving oxidative stress, attenuating mitochondrial function, curbing spindle body formation and down-regulating extracellular signal-related kinases (ERK1/2) expression, providing a deep insight into the cellular and molecular basis of UCH-L1 during mouse oocyte maturation.

Author(s):  
Soo-Hyun Park ◽  
Pil-Soo Jeong ◽  
Ye Eun Joo ◽  
Hyo-Gu Kang ◽  
Min Ju Kim ◽  
...  

Increasing evidence has demonstrated that oxidative stress impairs oocyte maturation, but the underlying mechanisms remain largely unknown. Here, for the first time, we examined the antioxidant role of luteolin in meiotic progression and the underlying mechanisms. Supplementation of 5 μM luteolin increased the rates of first polar body extrusion and blastocyst formation after parthenogenetic activation, and the expression levels of oocyte competence (BMP15 and GDF9)-, mitogen-activated protein kinase (MOS)-, and maturation promoting factor (CDK1 and Cyclin B)-related genes were also improved. Luteolin supplementation decreased intracellular reactive oxygen species levels and increased the expression levels of oxidative stress-related genes (SOD1, SOD2, and CAT). Interestingly, luteolin alleviated defects in cell organelles, including actin filaments, the spindle, mitochondria, the endoplasmic reticulum, and cortical granules, caused by H2O2 exposure. Moreover, luteolin significantly improved the developmental competence of in vitro-fertilized embryos in terms of the cleavage rate, blastocyst formation rate, cell number, cellular survival rate, and gene expression and markedly restored the competencies decreased by H2O2 treatment. These findings revealed that luteolin supplementation during in vitro maturation improves porcine meiotic progression and subsequent embryonic development by protecting various organelle dynamics against oxidative stress, potentially increasing our understanding of the underlying mechanisms governing the relationship between oxidative stress and the meiotic events required for successful oocyte maturation.


2006 ◽  
Vol 16 (2) ◽  
pp. 214-220 ◽  
Author(s):  
Chunqi Ma ◽  
Héléne A. Benink ◽  
Daye Cheng ◽  
Véronique Montplaisir ◽  
Ling Wang ◽  
...  

Author(s):  
Luyao Zhang ◽  
Zichuan Wang ◽  
Tengfei Lu ◽  
Lin Meng ◽  
Yan Luo ◽  
...  

Overweight or obese women seeking pregnancy is becoming increasingly common. Human maternal obesity gives rise to detrimental effects during reproduction. Emerging evidence has shown that these abnormities are likely attributed to oocyte quality. Oxidative stress induces poor oocyte conditions, but whether mitochondrial calcium homeostasis plays a key role in oocyte status remains unresolved. Here, we established a mitochondrial Ca2+ overload model in mouse oocytes. Knockdown gatekeepers of the mitochondrial Ca2+ uniporters Micu1 and Micu2 as well as the mitochondrial sodium calcium exchanger NCLX in oocytes both increased oocytes mitochondrial Ca2+ concentration. The overload of mitochondria Ca2+ in oocytes impaired mitochondrial function, leaded to oxidative stress, and changed protein kinase A (PKA) signaling associated gene expression as well as delayed meiotic resumption. Using this model, we aimed to determine the mechanism of delayed meiosis caused by mitochondrial Ca2+ overload, and whether oocyte-specific inhibition of mitochondrial Ca2+ influx could improve the reproductive abnormalities seen within obesity. Germinal vesicle breakdown stage (GVBD) and extrusion of first polar body (PB1) are two indicators of meiosis maturation. As expected, the percentage of oocytes that successfully progress to the germinal vesicle breakdown stage and extrude the first polar body during in vitro culture was increased significantly, and the expression of PKA signaling genes and mitochondrial function recovered after appropriate mitochondrial Ca2+ regulation. Additionally, some indicators of mitochondrial performance—such as adenosine triphosphate (ATP) and reactive oxygen species (ROS) levels and mitochondrial membrane potential—recovered to normal. These results suggest that the regulation of mitochondrial Ca2+ uptake in mouse oocytes has a significant role during oocyte maturation as well as PKA signaling and that proper mitochondrial Ca2+ reductions in obese oocytes can recover mitochondrial performance and improve obesity-associated oocyte quality.


Zygote ◽  
2021 ◽  
pp. 1-9
Author(s):  
Chan Hee Lee ◽  
Min Kook Kang ◽  
Dong Hyun Sohn ◽  
Hye Min Kim ◽  
Juri Yang ◽  
...  

Summary Oxidative stress causes several diseases and dysfunctions in cells, including oocytes. Clearly, oxidative stress influences oocyte quality during in vitro maturation and fertilization. Here we tested the ability of coenzyme Q10 (CoQ10) to reduce reactive oxygen species (ROS) and improve mouse oocyte quality during in vitro culture. Treatment with 50 μM CoQ10 efficiently reduced ROS levels in oocytes cultured in vitro. The fertilizable form of an oocyte usually contains a cortical granule-free domain (CGFD). CoQ10 enhanced the ratio of CGFD–oocytes from 35% to 45%. However, the hardening of the zona pellucida in oocytes was not affected by CoQ10 treatment. The in vitro maturation capacity of oocytes, which was determined by the first polar body extrusion, was enhanced from 48.9% to 75.7% by the addition of CoQ10 to the culture medium. During the parthenogenesis process, the number of two-cell embryos was increased by CoQ10 from 43.5% to 67.3%. Additionally, treatment with CoQ10 increased the expression of Bcl2 and Sirt1 in cumulus cells. These results suggested that CoQ10 had a positive effect on ROS reduction, maturation rate and two-cell embryo formation in mouse oocyte culture.


2016 ◽  
Vol 28 (2) ◽  
pp. 237
Author(s):  
S. H. Lee ◽  
H. J. Oh ◽  
G. A. Kim ◽  
M. J. Kim ◽  
Y. B. Choi ◽  
...  

In oestrus stage, canine oocytes surrounded by cumulus cells undergo maturation in oviduct for 3 days after ovulation. We hypothesised that canine cumulus cells (cCC) and canine oviduct cells (cOC) in oestrus stage might affect the maturation of oocyte and embryo development. Therefore, the present study was aimed to compare the effects of cCC and cOC co-culture system on oocyte in vitro maturation and embryo in vitro development. cCC were separated from cumulus‐oocyte complex (COC) in ovary from bitches in oestrus phase. cOC were collected from oviduct flushing of bitches in oestrus phase. Both cCC and cOC were cultured and cryopreserved until use for co-culture. In the first experiment, the effect of co-culture using cCC and cOC on porcine oocyte in vitro maturation (IVM) were investigated. The porcine COC were randomly cultured in different co-culture groups as follows: 1) co-culturing with cCC for 42 h, 2) co-culturing with cOC for 42 h, and 3) culturing in absence of cCC or cOC. After IVM, extrusion of the first polar body was observed under a microscope. In the second experiment, the matured oocytes with the first polar body derived from each group were activated with electrical stimulus. Parthenotes were cultured in porcine zygote medium-5 (PZM-5) for 7 days at 39°C, 5% CO2 and O2 in a humidified atmosphere. The embryo developmental competence was estimated by assessing the in vitro development under microscope. The third experiment was to evaluate the reactive oxygen species (ROS) levels in each supernatant medium obtained from cCC and cOC co-culture group after IVM using a OxiselectTM ROS ELISA Assay kit. Last, analysis of genes (MAPK1/3, SMAD2/3, GDF9 and BMP15) expression in cCC and cOC co-cultured with porcine COC using real-time PCR is in progress. As results, IVM rate of cOC group (91.19 ± 0.45%) was significantly higher than that of cCC and control group (86.50 ± 0.61% and 79.81 ± 0.82%; P < 0.05). Also, cOC groups expressed the highest efficiency in cleavage rate, blastocyst formation rate, and the total cell number in blastocyst (P < 0.05). In ROS levels, cOC group (555 ± 7.77 nM) were significantly lower than cCC and control groups (596.8 ± 8.52 nM and 657.8 ± 11.34 nM). The present study demonstrated that co-culture with cOC improved the in vitro oocyte maturation and the in vitro development rate of porcine embryos. The ROS level decreased in cOC co-culture would have beneficial influence on oocytes maturation. For further study, we will investigate the relation between gene expression related to oocyte maturation and the co-culture results. This research was supported by a global PhD Fellowship Program through NRF funded by the Ministry of Education (NRF-20142A1021187), RDA (#PJ010928032015), IPET (#311011–05–4-SB010, #311062–04–3-SB010), Research Institute for Veterinary Science, and the BK21 plus program.


Zygote ◽  
2018 ◽  
Vol 26 (4) ◽  
pp. 261-269
Author(s):  
Xia-Guang Duan ◽  
Zai-Qing Huang ◽  
Chun-Guang Hao ◽  
Xiao-Jun Zhi ◽  
Xiao-Bing Qi ◽  
...  

SummaryPropofol is a intravenous anaesthetic most commonly used in ultrasound oocyte retrieval. We studied if the use of propofol had an effect on mouse oocyte maturation, pregnancy, childbirth and progeny and investigated the correlation between propofol side effects and reproductive performance in mice. There was no statistical difference in mating, pregnancy, childbirth, litter size, the number of stillbirths and survival between each group (P>0.05). Propofol also had no effect on polar body extrusion in oocyte maturation as well as on pronucleus formation and, subsequently, early embryo development (P>0.05). An increased concentration of propofol had no effect on this result, although propofol at more than 0.01 mg/ml reduced polar body extrusion. Different concentrations of propofol had no effect on oocyte culture in vitro, pronucleus formation and early embryo development.


2020 ◽  
Author(s):  
Xiaofei Jiao ◽  
Andressa Gonsioroski ◽  
Jodi A Flaws ◽  
Huanyu Qiao

AbstractDisinfection by-products (DBPs) are compounds produced during the water disinfection process. Iodoacetic acid (IAA) is one of the unregulated DBPs in drinking water, with potent cytotoxicity and genotoxicity in animals. However, whether IAA has toxic effects on oocyte maturation remains unclear. Here, we show that IAA exposure resulted in metaphase I (MI) arrest and polar-body-extrusion failure in mouse oocytes, indicating that IAA had adverse effects on mouse oocyte maturation in vitro. Particularly, IAA treatment caused abnormal spindle assembly and chromosome misalignment. Previous studies reported that IAA is a known inducer of oxidative stress in non-germline cells. Correspondingly, we found that IAA exposure increased the reactive oxygen species (ROS) levels in oocytes in a dose-dependent manner, indicating IAA exposure could induce oxidative stress in oocytes. Simultaneously, DNA damage was also elevated in the nuclei of these IAA-exposed mouse oocytes, evidenced by increased γ-H2AX focus number. In addition, the un-arrested oocytes entered metaphase II (MII) with severe defects in spindle morphologies and chromosome alignment after 14-hour IAA treatment. An antioxidant, N-acetyl-L-cysteine (NAC), reduced the elevated ROS level and restored the meiotic maturation in the IAA. exposed oocytes, which indicates that IAA-induced maturation failure in oocytes was mainly mediated by oxidative stress. Collectively, our results indicate that IAA exposure interfered with mouse oocyte maturation by elevating ROS levels, disrupting spindle assembly, inducing DNA damage, and causing MI arrest.


2017 ◽  
Vol 29 (1) ◽  
pp. 195
Author(s):  
S. H. Lee ◽  
H. J. Oh ◽  
M. J. Kim ◽  
G. A. Kim ◽  
E. M. N. Setyawan ◽  
...  

In oocyte maturation, hepatocyte growth factor and vascular endothelial growth factor (VEGF) contribute to promote granulosa cell proliferation and cumulus cell expansion. It is well known that human endothelial progenitor cells (hEPC), which are isolated from monocytes and macrophages, secrete a variety of growth factors, such as hepatocyte growth factor and VEGF, and improve the process of angiogenesis. Therefore, the aim of this study was to investigate the effects of hEPC on in vitro oocyte maturation and subsequent embryo development in pigs. To isolate and culture hEPC, human peripheral blood sample was collected from a healthy donor and peripheral blood mononuclear cells were separated. The peripheral blood mononuclear cells were seeded into flask with defined Keratinocyte-SFM-based medium and incubated at 37°C, 5% CO2. The hEPC were cultured and cryopreserved until use for co-culturing with porcine oocytes obtained from a local slaughterhouse ovaries. Cumulus-oocyte complexes were randomly cultured in 2 groups; 1) co-culturing with hEPC and 2) culturing without hEPC. Cumulus-oocyte complexes were cultured in the in vitro maturation (IVM) medium containing TCM-199 supplemented with 0.57 mM cysteine, 0.91 mM sodium pyruvate, 5 μL mL−1 of insulin-transferrin-selenium solution 100X (Invitrogen, Seoul, South Korea), 10% porcine follicular fluid, 10 IU mL−1 of eCG, and 10 IU mL−1 of hCG. After IVM, the first polar body extrusion was observed under the microscope. To evaluate embryo development competence, the matured oocytes were activated with electrical stimulus and cultured in porcine zygote medium-5 for 7 days. The cleavage and blastocyst formation rates were observed on Day 2 and 7, respectively. Also, blastocysts were stained with Hoechst 33342 and total blastocyst cell numbers were evaluated under a fluorescence microscope. As a result, the oocyte maturation rate or first polar body extrusion rate of the hEPC co-culture group (90.06 ± 0.75) was significantly higher than the control group (90.06 ± 0.75 v. 85.79 ± 0.59; P < 0.05). There was no significant difference between the hEPC co-cultured and the control groups in cleavage rate. However, a significant difference in blastocyst formation rate was observed between the hEPC co-cultured and the control groups (28.45 ± 4.92 v. 15.87 ± 2.27; P < 0.05), whereas total blastocyst cell numbers did not show significant difference between the 2 groups. The all data were analysed by unpaired t-test using GraphPad Prism 5.0 (GraphPad Software Inc., La Jolla, CA, USA). Values are means ± standard error of mean. In conclusion, the results in the present study demonstrated that co-culturing with hEPC improved the in vitro oocyte maturation and blastocyst formation rate. Also, we are underway in analysing the concentration of VEGF families in the hEPC co-culture medium after IVM. For further study, we will analyse the genes of the VEGF signaling pathway in the cumulus cells and matured oocytes derived from the 2 groups. This research was supported by Nature Cell (#550-20150030), global PH.D Fellowship Program through NRF funded by the Ministry of Education (NRF-20142A1021187), and Research Institute for Veterinary Science, the BK21 plus program.


2014 ◽  
Author(s):  
Xing Duan ◽  
Zhen-Bo Wang ◽  
Xiang-Shun Cui ◽  
Nam-Hyung Kim ◽  
Shao-Chen Sun

Author(s):  
Sicong Yu ◽  
Lepeng Gao ◽  
Yang Song ◽  
Xin Ma ◽  
Shuang Liang ◽  
...  

Abstract Mitochondria play an important role in controlling oocyte developmental competence. Our previous studies showed that glycine can regulate mitochondrial function and improve oocyte maturation in vitro. However, the mechanisms by which glycine affects mitochondrial function during oocyte maturation in vitro have not been fully investigated. In this study, we induced a mitochondrial damage model in oocytes with the Bcl-2-specific antagonist ABT-199. We investigated whether glycine could reverse the mitochondrial dysfunction induced by ABT-199 exposure and whether it is related to calcium regulation. Our results showed that ABT-199 inhibited cumulus expansion, decreased the oocyte maturation rate and the intracellular glutathione (GSH) level, caused mitochondrial dysfunction, induced oxidative stress, which was confirmed by decreased mitochondrial membrane potential (Δ⍦m) and the expression of mitochondrial function-related genes (PGC-1α), and increased reactive oxygen species (ROS) levels and the expression of apoptosis-associated genes (Bax, caspase-3, CytC). More importantly, ABT-199-treated oocytes showed an increase in the intracellular free calcium concentration ([Ca 2+]i) and had impaired cortical type 1 inositol 1,4,5-trisphosphate receptors (IP3R1) distribution. Nevertheless, treatment with glycine significantly ameliorated mitochondrial dysfunction, oxidative stress and apoptosis, glycine also regulated [Ca 2+]i levels and IP3R1 cellular distribution, which further protects oocyte maturation in ABT-199-induced porcine oocytes. Taken together, our results indicate that glycine has a protective action against ABT-199-induced mitochondrial dysfunction in porcine oocytes.


Sign in / Sign up

Export Citation Format

Share Document