scholarly journals Type II collagen-positive progenitors are major stem cells to control skeleton development and vascular formation

2020 ◽  
Author(s):  
Xinhua Li ◽  
Shuting Yang ◽  
Dian Jing ◽  
Lin Qin ◽  
Hu Zhao ◽  
...  

AbstractPrevious studies have revealed that type II collagen positive (Col2+) cells represent a kind of skeleton stem cells (SSC) and their descendants contribute to chondrocytes, osteoblasts, Cxcl12 (chemokine (C-X-C motif) ligand 12)-abundant stromal cells and bone marrow stromal/mesenchymal progenitor cells in postnatal life. To further elucidate the function of Col2+ progenitors, we generated mice with ablation of either embryonic or postnatal Col2+ cells. Embryonic ablation of Col2+ progenitors caused the mouse die at newborn with the absence of all skeleton except partial craniofacial bone, as well as multiple organ development defects and blood vessel loss. Postnatal ablation of Col2+ cells causes mouse growth retardation and collagenopathy phenotype. By examining Col2+ cells ablated mice, we found that, besides contributing to long bone and vertebral bone development, Col2+ cells are also involved in calvaria bone development. Meanwhile, Col2+ cells are the major cells to contribute all skeletal development including spine, rib and long bones. Moreover, our functional study provide evidence that intramembranous ossification is involved in craniofacial bone formation and long bone development, but not participates in spine development.By performing lineage tracing experiments in embryonic or postnatal mice, we discovered that the presence of Col2+ progenitors not only within the bone marrow and growth plate (GP) but also within articular cartilage. Moreover, the number and differentiation ability of Col2+ progenitors were decreased with age in long bone and knee. Furthermore, fate-mapping studies revealed that Col2+ progenitors also contributed to CD31+ blood vessel endothelial development in calvariae bone, long bone and many organs. Interestingly, we found only 25.4% CD31+ blood vessel endothelial in long bone but almost all the CD31+ blood vessel endothelial in calvariae bone are differentiated from Col2+ cells. Consistently, postnatal Col2+ cells differentiated to both chondrocytes and CD31+ blood vessel endothelial cells during bone fracture healing. Therefore, this study reveals that Col2+ progenitors are the major source of endochondral ossification, and they also contribute to vascular development in multiple organs and fracture repair.

2019 ◽  
Vol 47 (7) ◽  
pp. 3261-3270
Author(s):  
Cheng Wang ◽  
Qiaohui Liu ◽  
Xiaoyuan Ma ◽  
Guofeng Dai

Objective To measure the inductive effect of kartogenin on matrix metalloproteinase-2 levels during the differentiation of human bone marrow mesenchymal stem cells (hMSCs) into chondrocytes in vitro. Methods In vitro cultured bone marrow hMSCs were grown to the logarithmic phase and then divided into three groups: control group (0 µM kartogenin), 1 µM kartogenin group and 10 µM kartogenin group. After 72 h of culture, cell proliferation and differentiation were observed microscopically. Matrix metalloproteinase-2 (MMP-2) in the cell supernatant and type II collagen levels in the cells were detected by enzyme linked immunosorbent assay and immunofluorescence staining, respectively. Results Kartogenin induced the proliferation and differentiation of hMSCs. With the increase of kartogenin concentration, the level of type II collagen was increased, while the level of MMP-2 decreased. Conclusion These findings indicate that kartogenin can induce hMSCs to differentiate into chondrocytes, and with the increase of kartogenin concentration, degeneration of the cartilage extracellular matrix may be inhibited.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
King-Chuen Wu ◽  
Hung-Kai Weng ◽  
Yun-Shang Hsu ◽  
Pin-Jia Huang ◽  
Yang-Kao Wang

Abstract Background Arctium lappa L. root (burdock root) has long been recommended for the treatment of different diseases in traditional Chinese medicine. Burdock root possesses anti-oxidative, anti-inflammatory, anti-cancer, and anti-microbial activities. The aim of the study was to elucidate whether aqueous extract of burdock root regulates mesenchymal stem cell proliferation and differentiation. Methods Human bone marrow-derived mesenchymal stem cells in 2D high density culture and in 3D micromass pellets were treated with chondrogenic induction medium and chondral basal medium in the absence or presence of aqueous extract of burdock root. The chondrogenic differentiation was accessed by staining glucosaminoglycans, immunostaining SOX9 and type II collagen and immuonblotting of SOX9, aggrecan and type II collagen. Results Treatment of aqueous extract of burdock root increased the cell proliferation of hMSCs. It did not have significant effect on osteogenic and adipogenic differentiation, but significantly enhanced chondrogenic induction medium-induced chondrogenesis. The increment was dose dependent, as examined by staining glucosaminoglycans, SOX9, and type II collagen and immunobloting of SOX9, aggrecan and type II collagen in 2D and 3D cultures. In the presence of supplemental materials, burdock root aqueous extract showed equivalent chondrogenic induction capability to that of TGF-β. Conclusions The results demonstrate that aqueous extract of Arctium lappa L. root promotes chondrogenic medium-induced chondrogenic differentiation. The aqueous extract of burdock root can even be used alone to stimulate chondrogenic differentiation. The study suggests that the aqueous extract of burdock root can be used as an alternative strategy for treatment purposes.


2017 ◽  
Vol 5 (44) ◽  
pp. 8707-8718 ◽  
Author(s):  
Ke Yang ◽  
Jing Sun ◽  
Dan Wei ◽  
Lu Yuan ◽  
Jirong Yang ◽  
...  

Type II collagen methacrylamide with a triple helix was developed for 3D construction of a cartilaginous ECM-like microenvironment to induce chondrogenic differentiation of BMSCs.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Baichuan Wang ◽  
Caixia Sun ◽  
Zengwu Shao ◽  
Shuhua Yang ◽  
Biao Che ◽  
...  

Designer self-assembling peptide nanofiber hydrogel scaffolds have been considered as promising biomaterials for tissue engineering because of their excellent biocompatibility and biofunctionality. Our previous studies have shown that a novel designer functionalized self-assembling peptide nanofiber hydrogel scaffold (RLN/RADA16, LN-NS) containing N-terminal peptide sequence of link protein (link N) can promote nucleus pulposus cells (NPCs) adhesion and three-dimensional (3D) migration and stimulate biosynthesis of type II collagen and aggrecan by NPCsin vitro. The present study has extended these investigations to determine the effects of this functionalized LN-NS on bone marrow stem cells (BMSCs), a potential cell source for NP regeneration. Although the functionalized LN-NS cannot promote BMSCs proliferation, it significantly promotes BMSCs adhesion compared with that of the pure RADA16 hydrogel scaffold. Moreover, the functionalized LN-NS remarkably stimulates biosynthesis and deposition of type II collagen and aggrecan. These data demonstrate that the functionalized peptide nanofiber hydrogel scaffold containing link N peptide as a potential matrix substrate will be very useful in the NP tissue regeneration.


2020 ◽  
Vol 90 (9) ◽  
pp. 1586
Author(s):  
М.С. Божокин ◽  
Д.Б. Вчерашний ◽  
С.Г. Ястребов ◽  
Л.Л. Бейлинсон ◽  
М.Г. Хотин

Multipotent stem cells rat bone marrow irradiated with a low-intensity red laser beam (0.63 µm, 1.7 mW) demonstrated an increase of expression of col2a1 gene that is responsible for the synthesis of type II collagen, which is one of the most abundant proteins of the extracellular matrix of hyaline cartilage. The results show the applicability this effect in the treatment of diseases whose development is associated with surface damage of articular cartilage.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 880
Author(s):  
Shamsul Bin Sulaiman ◽  
Shiplu Roy Chowdhury ◽  
Mohd Fauzi Bin Mh Busra ◽  
Rizal Bin Abdul Rani ◽  
Nor Hamdan Bin Mohamad Yahaya ◽  
...  

The tissue engineering approach in osteoarthritic cell therapy often requires the delivery of a substantially high cell number due to the low engraftment efficiency as a result of low affinity binding of implanted cells to the targeted tissue. A modification towards the cell membrane that provides specific epitope for antibody binding to a target tissue may be a plausible solution to increase engraftment. In this study, we intercalated palmitated protein G (PPG) with mesenchymal stem cells (MSCs) and antibody, and evaluated their effects on the properties of MSCs either in monolayer state or in a 3D culture state (gelatin microsphere, GM). Bone marrow MSCs were intercalated with PPG (PPG-MSCs), followed by coating with type II collagen antibody (PPG-MSC-Ab). The effect of PPG and antibody conjugation on the MSC proliferation and multilineage differentiation capabilities both in monolayer and GM cultures was evaluated. PPG did not affect MSC proliferation and differentiation either in monolayer or 3D culture. The PPG-MSCs were successfully conjugated with the type II collagen antibody. Both PPG-MSCs with and without antibody conjugation did not alter MSC proliferation, stemness, and the collagen, aggrecan, and sGAG expression profiles. Assessment of the osteochondral defect explant revealed that the PPG-MSC-Ab micromass was able to attach within 48 h onto the osteochondral surface. Antibody-conjugated MSCs in GM culture is a potential method for targeted delivery of MSCs in future therapy of cartilage defects and osteoarthritis.


Sign in / Sign up

Export Citation Format

Share Document