scholarly journals PAF1 facilitates RNA polymerase II ubiquitination by the Elongin A complex through phosphorylation by CDK12

2020 ◽  
Author(s):  
Gabriel Sanchez ◽  
Jérôme Barbier ◽  
Céline Elie ◽  
Rosemary Kiernan ◽  
Sylvie Rouquier

ABSTRACTThe conserved Polymerase-Associated Factor 1 complex (PAF1C) regulates all stages of the RNA polymerase II (RNAPII) transcription cycle from the promoter to the 3’ end formation site of mRNA encoding genes and has been linked to numerous transcription related processes. Here, we show that PAF1 interacts with Elongin A, a transcription elongation factor as well as a component of a cullin-RING ligase that targets stalled RNAPII for ubiquitination and proteasome-dependent degradation in response to DNA damage or other stresses. We show that, in absence of any induced stress, PAF1 physically interacts with the E3 ubiquitin ligase form of the Elongin A complex and facilitates ubiquitination of RNAPII. We demonstrate that this ubiquitination is dependent of the Ser2 phosphorylation of the RNAPII carboxy-terminal domain (CTD) by CDK12. Our findings highlight a novel unexpected role of PAF1-CDK12 in RNAPII transcription cycle, raising the possibility that the Elongin A ubiquitin ligase plays a role in normal transcription process, and suggest a transcription surveillance mechanism ready to degrade RNAPII if needed.

2012 ◽  
Vol 23 (21) ◽  
pp. 4297-4312 ◽  
Author(s):  
Alicia García ◽  
Alejandro Collin ◽  
Olga Calvo

The transcriptional coactivator Sub1 has been implicated in several steps of mRNA metabolism in yeast, such as the activation of transcription, termination, and 3′-end formation. In addition, Sub1 globally regulates RNA polymerase II phosphorylation, and most recently it has been shown that it is a functional component of the preinitiation complex. Here we present evidence that Sub1 plays a significant role in transcription elongation by RNA polymerase II (RNAPII). We show that SUB1 genetically interacts with the gene encoding the elongation factor Spt5, that Sub1 influences Spt5 phosphorylation of the carboxy-terminal domain of RNAPII largest subunit by the kinase Bur1, and that both Sub1 and Spt5 copurify in the same complex, likely during early transcription elongation. Indeed, our data indicate that Sub1 influences Spt5–Rpb1 interaction. In addition, biochemical and molecular data show that Sub1 influences transcription elongation of constitutive and inducible genes and associates with coding regions in a transcription-dependent manner. Taken together, our results indicate that Sub1 associates with Spt5 and influences Spt5–Rpb1 complex levels and consequently transcription elongation rate.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Kyle A. Nilson ◽  
David H. Price

HIV-1 usurps the RNA polymerase II elongation control machinery to regulate the expression of its genome during lytic and latent viral stages. After integration into the host genome, the HIV promoter within the long terminal repeat (LTR) is subject to potent downregulation in a postinitiation step of transcription. Once produced, the viral protein Tat commandeers the positive transcription elongation factor, P-TEFb, and brings it to the engaged RNA polymerase II (Pol II), leading to the production of viral proteins and genomic RNA. HIV can also enter a latent phase during which factors that regulate Pol II elongation may play a role in keeping the virus silent. HIV, the causative agent of AIDS, is a worldwide health concern. It is hoped that knowledge of the mechanisms regulating the expression of the HIV genome will lead to treatments and ultimately a cure.


2002 ◽  
Vol 22 (1) ◽  
pp. 321-331 ◽  
Author(s):  
Ran Taube ◽  
Xin Lin ◽  
Dan Irwin ◽  
Koh Fujinaga ◽  
B. Matija Peterlin

ABSTRACT Transcriptional elongation by RNA polymerase II (RNAPII) is regulated by the positive transcription elongation factor b (P-TEFb). P-TEFb is composed of Cdk9 and C-type cyclin T1 (CycT1), CycT2a, CycT2b, or CycK. The role of the C-terminal region of CycT1 and CycT2 remains unknown. In this report, we demonstrate that these sequences are essential for the activation of transcription by P-TEFb via DNA, i.e., when CycT1 is tethered upstream or downstream of promoters and coding sequences. A histidine-rich stretch, which is conserved between CycT1 and CycT2 in this region, bound the C-terminal domain of RNAPII. This binding was required for the subsequent expression of full-length transcripts from target genes. Thus, P-TEFb could mediate effects of enhancers on the elongation of transcription.


2018 ◽  
Author(s):  
Chen Chen ◽  
Jie Shu ◽  
Chenlong Li ◽  
Raj K. Thapa ◽  
Vi Nguyen ◽  
...  

SummarySPT6 is a conserved transcription regulator that is generally viewed as an elongation factor. However, emerging evidence show its potential role in the control of transcription initiation at genic and intragenic promoters. Here we first present the genome-wide occupancy of Arabidopsis SPT6-like (SPT6L) and demonstrate its conserved role in facilitating RNA Polymerase II (RNAPII) occupancy across transcribed genes. Further, we show that SPT6L enrichment is shifted, unexpectedly, from gene body to the transcription starting site (TSS) when its association with RNAPII is disrupted. Finally, we demonstrate that recruitment of SPT6L starts at TSS, and then spreads to the gene body during transcription. These findings refine the mechanisms underlying SPT6L recruitment in transcription and shed light on the role of SPT6L in transcription initiation.


1992 ◽  
Vol 12 (5) ◽  
pp. 2078-2090
Author(s):  
N F Marshall ◽  
D H Price

We have examined elongation by RNA polymerase II initiated at a promoter and have identified two classes of elongation complexes. Following initiation at a promoter, all polymerase molecules enter an abortive mode of elongation. Abortive elongation is characterized by the rapid generation of short transcripts due to pausing of the polymerase followed by termination of transcription. Termination of the early elongation complexes can be suppressed by the addition of 250 mM KCl or 1 mg of heparin per ml soon after initiation. Elongation complexes of the second class carry out productive elongation in which long transcripts can be synthesized. Productive elongation complexes are derived from early paused elongation complexes by the action of a factor which we call P-TEF (positive transcription elongation factor). P-TEF is inhibited by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole at concentrations which have no effect on the initiation of transcription. By using templates immobilized on paramagnetic particles, we show that isolated preinitiation complexes lack P-TEF and give rise to transcription complexes which can carry out only abortive elongation. The ability to carry out productive elongation can be restored to isolated transcription complexes by the addition of P-TEF after initiation. A model is presented which describes the role of elongation factors in the formation and maintenance of elongation complexes. The model is consistent with the available in vivo data concerning control of elongation and is used to predict the outcome of other potential in vitro and in vivo experiments.


1997 ◽  
Vol 136 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Euikyung Kim ◽  
Lei Du ◽  
David B. Bregman ◽  
Stephen L. Warren

The carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) contains multiple tandem copies of the consensus heptapeptide, TyrSerProThrSerProSer. Concomitant with transcription initiation the CTD is phosphorylated. Elongating polymerase has a hyperphosphorylated CTD, but the role of this modification is poorly understood. A recent study revealed that some hyperphosphorylated polymerase molecules (Pol IIo) are nonchromosomal, and hence transcriptionally unengaged (Bregman, D.B., L. Du, S. van der Zee, S.L. Warren. 1995. J. Cell Biol. 129: 287–298). Pol IIo was concentrated in discrete splicing factor domains, suggesting a possible relationship between CTD phosphorylation and splicing factors, but no evidence beyond immunolocalization data was provided to support this idea. Here, we show that Pol IIo co-immunoprecipitates with members of two classes of splicing factors, the Sm snRNPs and non-snRNP SerArg (SR) family proteins. Significantly, Pol IIo's association with splicing factors is maintained in the absence of pre-mRNA, and the polymerase need not be transcriptionally engaged. We also provide definitive evidence that hyperphosphorylation of Pol II's CTD is poorly correlated with its transcriptional activity. Using monoclonal antibodies (mAbs) H5 and H14, which are shown here to recognize phosphoepitopes on Pol II's CTD, we have quantitated the level of Pol IIo at different stages of the cell cycle. The level of Pol IIo is similar in interphase and mitotic cells, which are transcriptionally active and inactive, respectively. Finally, complexes containing Pol IIo and splicing factors can be prepared from mitotic as well as interphase cells. The experiments reported here establish that hyperphosphorylation of the CTD is a good indicator of polymerase's association with snRNP and SR splicing factors, but not of its transcriptional activity. Most importantly, the present study suggests that splicing factors may associate with the polymerase via the hyperphosphorylated CTD.


1992 ◽  
Vol 12 (5) ◽  
pp. 2078-2090 ◽  
Author(s):  
N F Marshall ◽  
D H Price

We have examined elongation by RNA polymerase II initiated at a promoter and have identified two classes of elongation complexes. Following initiation at a promoter, all polymerase molecules enter an abortive mode of elongation. Abortive elongation is characterized by the rapid generation of short transcripts due to pausing of the polymerase followed by termination of transcription. Termination of the early elongation complexes can be suppressed by the addition of 250 mM KCl or 1 mg of heparin per ml soon after initiation. Elongation complexes of the second class carry out productive elongation in which long transcripts can be synthesized. Productive elongation complexes are derived from early paused elongation complexes by the action of a factor which we call P-TEF (positive transcription elongation factor). P-TEF is inhibited by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole at concentrations which have no effect on the initiation of transcription. By using templates immobilized on paramagnetic particles, we show that isolated preinitiation complexes lack P-TEF and give rise to transcription complexes which can carry out only abortive elongation. The ability to carry out productive elongation can be restored to isolated transcription complexes by the addition of P-TEF after initiation. A model is presented which describes the role of elongation factors in the formation and maintenance of elongation complexes. The model is consistent with the available in vivo data concerning control of elongation and is used to predict the outcome of other potential in vitro and in vivo experiments.


Science ◽  
2012 ◽  
Vol 336 (6089) ◽  
pp. 1723-1725 ◽  
Author(s):  
Andreas Mayer ◽  
Martin Heidemann ◽  
Michael Lidschreiber ◽  
Amelie Schreieck ◽  
Mai Sun ◽  
...  

In different phases of the transcription cycle, RNA polymerase (Pol) II recruits various factors via its C-terminal domain (CTD), which consists of conserved heptapeptide repeats with the sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. We show that the CTD of transcribing yeast Pol II is phosphorylated at Tyr1, in addition to Ser2, Thr4, Ser5, and Ser7. Tyr1 phosphorylation stimulates binding of elongation factor Spt6 and impairs recruitment of termination factors Nrd1, Pcf11, and Rtt103. Tyr1 phosphorylation levels rise downstream of the transcription start site and decrease before the polyadenylation site, largely excluding termination factors from gene bodies. These results show that CTD modifications trigger and block factor recruitment and lead to an extended CTD code that explains transcription cycle coordination on the basis of differential phosphorylation of Tyr1, Ser2, and Ser5.


2006 ◽  
Vol 27 (3) ◽  
pp. 926-936 ◽  
Author(s):  
Mariela Reyes-Reyes ◽  
Michael Hampsey

ABSTRACT The RNA polymerase II (RNAP II) transcription cycle is accompanied by changes in the phosphorylation status of the C-terminal domain (CTD), a reiterated heptapeptide sequence (Y1S2P3T4S5P6S7) present at the C terminus of the largest RNAP II subunit. One of the enzymes involved in this process is Ssu72, a CTD phosphatase with specificity for serine-5-P. Here we report that the ssu72-2-encoded Ssu72-R129A protein is catalytically impaired in vitro and that the ssu72-2 mutant accumulates the serine-5-P form of RNAP II in vivo. An in vitro transcription system derived from the ssu72-2 mutant exhibits impaired elongation efficiency. Mutations in RPB1 and RPB2, the genes encoding the two largest subunits of RNAP II, were identified as suppressors of ssu72-2. The rpb1-1001 suppressor encodes an R1281A replacement, whereas rpb2-1001 encodes an R983G replacement. This information led us to identify the previously defined rpb2-4 and rpb2-10 alleles, which encode catalytically slow forms of RNAP II, as additional suppressors of ssu72-2. Furthermore, deletion of SPT4, which encodes a subunit of the Spt4-Spt5 early elongation complex, also suppresses ssu72-2, whereas the spt5-242 allele is suppressed by rpb2-1001. These results define Ssu72 as a transcription elongation factor. We propose a model in which Ssu72 catalyzes serine-5-P dephosphorylation subsequent to addition of the 7-methylguanosine cap on pre-mRNA in a manner that facilitates the RNAP II transition into the elongation stage of the transcription cycle.


1998 ◽  
Vol 63 (0) ◽  
pp. 301-310 ◽  
Author(s):  
S. MCCRACKEN ◽  
E. ROSONINA ◽  
N. FONG ◽  
M. SIKES ◽  
A. BEYER ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document