scholarly journals The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array

2020 ◽  
Author(s):  
Dustin C. Woods ◽  
Francisco Rodríguez-Ropero ◽  
Jeff Wereszczynski

AbstractLinker histones bind to nucleosomes and modify chromatin structure and dynamics as a means of epigenetic regulation. Biophysical studies have shown that chromatin fibers can adopt a plethora of conformations with varying levels of compaction. Linker histone condensation, and its specific binding disposition, has been associated with directly tuning this ensemble of states. However, the atomistic dynamics and quantification of this mechanism remains poorly understood. Here, we present molecular dynamics simulations of octa-nucleosome arrays, based on a cryo-EM structure of the 30-nm chromatin fiber, with and without the globular domains of the H1 linker histone to determine how they influence fiber structures and dynamics. Results show that when bound, linker histones inhibit DNA flexibility and stabilize repeating tetra-nucleosomal units, giving rise to increased chromatin compaction. Furthermore, upon the removal of H1, there is a significant destabilization of this compact structure as the fiber adopts less strained and untwisted states. Interestingly, linker DNA sampling in the octa-nucleosome is exaggerated compared to its mono-nucleosome counterparts, suggesting that chromatin architecture plays a significant role in DNA strain even in the absence of linker histones. Moreover, H1-bound states are shown to have increased stiffness within tetra-nucleosomes, but not between them. This increased stiffness leads to stronger long-range correlations within the fiber, which may result in the propagation of epigenetic signals over longer spatial ranges. These simulations highlight the effects of linker histone binding on the internal dynamics and global structure of poly-nucleosome arrays, while providing physical insight into a mechanism of chromatin compaction.SignificanceLinker histones dynamically bind to DNA in chromatin fibers and serve as epigentic regulators. However, the extent to which they influence the gamut of chromatin architecture is still not well understood. Using molecular dynamics simulations, we studied compact octa-nucleosome arrays with and without the H1 linker histone to better understand the mechanisms dictating the structure of the chromatin fiber. Inclusion of H1 results in stabilization of the compact chromatin structure, while its removal results in a major conformational change towards an untwisted ladder-like state. The increased rigidity and correlations within the H1-bound array suggests that H1-saturated chromatin fibers are better suited to transferring long-range epigentic information.

2015 ◽  
Vol 17 (25) ◽  
pp. 16443-16453 ◽  
Author(s):  
Valentina Migliorati ◽  
Alessandra Serva ◽  
Giuliana Aquilanti ◽  
Sakura Pascarelli ◽  
Paola D'Angelo

EXAFS spectroscopy and molecular dynamics simulations have been combined to unveil the effect of the cation and anion nature on the local order and long range interactions of imidazolium halide ionic liquids.


2007 ◽  
Vol 263 ◽  
pp. 41-50 ◽  
Author(s):  
Veronique Pierron-Bohnes ◽  
R.V.P. Montsouka ◽  
Christine Goyhenex ◽  
T. Mehaddene ◽  
Leila Messad ◽  
...  

Ferromagnetic L10 ordered alloys are extensively studied nowadays as good candidates for high density magnetic storage media due to their high magnetic anisotropy, related to their chemical order anisotropy. Epitaxial thin bilayers NiPt/FePt/MgO(001) have been grown at 700 K and annealed at 800 K and 900 K. At 800 K, the L10 long-range order increases without measurable interdiffusion. At 900 K, the interdiffusion takes place without destroying the L10 long-range order. This surprising observation can be explained by different diffusion mechanisms that are energetically compared using molecular dynamics simulations in CoPt in the second moment tight binding approximation. In addition, the frequencies of the normal modes of vibration have been measured in FePd, CoPt and FePt single crystals using inelastic neutron scattering. The measurements were performed in the L10 ordered structure at 300 K. From a Born-von Karman fit, we have calculated the phonon densities of states. The migration energies in the 3 systems have been estimated using the model developed by Schober et al. (1981). The phonon densities of states have also been used to calculate several thermodynamic quantities as the vibration entropy and the Debye temperature.


2005 ◽  
Vol 127 (2) ◽  
pp. 476-477 ◽  
Author(s):  
Matthew M. Dedmon ◽  
Kresten Lindorff-Larsen ◽  
John Christodoulou ◽  
Michele Vendruscolo ◽  
Christopher M. Dobson

2020 ◽  
Vol 8 (43) ◽  
pp. 15436-15449
Author(s):  
Julia E. Medvedeva ◽  
Bishal Bhattarai

Microscopic mechanisms of the formation of H defects and their role in passivation of under-coordinated atoms, short- and long-range structural transformations, and the resulting electronic properties of amorphous In–Ga–O with In : Ga = 6 : 4 are investigated using computationally-intensive ab initio molecular dynamics simulations and accurate density-functional calculations.


2021 ◽  
Author(s):  
Carmelo Tempra ◽  
O.H. Samuli Ollila ◽  
Matti Javanainen

Lipid monolayers provide our lungs and eyes their functionality, and serve as proxy systems in biomembrane research. Therefore, lipid monolayers have been studied intensively also using molecular dynamics simulations, which are able to probe their lateral structure and interactions with, e.g., pharmaceuticals or nanoparticles. However, such simulations have struggled in describing the forces at the air–water interface. Particularly the surface tension of water and long-range van der Waals interactions have been considered critical, but their importance in monolayer simulations has been evaluated only separately. Here we combine the recent C36/LJ-PME lipid force field that in- cludes long-range van der Waals forces with water models that reproduce experimental surface tensions to elucidate the importance of these contributions in monolayer simulations. Our results suggest that a water model with correct surface tension is necessary to reproduce experimental surface pressure–area isotherms and monolayer phase behavior, while standard cutoff-based CHARMM36 lipid model with the 4-point OPC water model still provides the best agreement with experiments. Our results emphasize the importance of using high quality water models in applications and parameter development in molecular dynamics simulations of biomolecules.


Sign in / Sign up

Export Citation Format

Share Document