scholarly journals Neonicotinoids stimulate H2-limited methane emission in Periplaneta americana through the regulation of gut bacterium community

2020 ◽  
Author(s):  
Haibo Bao ◽  
Haoli Gao ◽  
Jianhua Zhang ◽  
Haiyan Lu ◽  
Na Yu ◽  
...  

AbstractMethane emitted by insects is considered to be an important source of atmospheric methane. Here we report the stimulation of methane emission in Periplaneta americana, an insect species with abundant methanogens, by neonicotinoids, insecticides widely used to control insect pests. The application of cycloxaprid (CYC) and imidacloprid (IMI) caused foregut expansion in P. americana, and increased the methane production and emission. Antibiotics could mostly eliminate the stimulatory effects. In P. americana gut, hydrogen levels increased and pH values decreased, which could be significantly explained by the gut bacterium community change. The proportion of several bacterium genera increased in guts following CYC treatment, and four genera from five with increased proportions could generate hydrogen at anaerobic conditions. Hydrogen is a central intermediate in methanogenesis. Gut methanogens could use the increased hydrogen to produce more methane, especially at acidic conditions. Following neonicotinoid applications, all increased methanogens in both foregut and hindgut used hydrogen as electron donor to produce methane. Besides, the up-regulation of mcrA, encoding the enzyme that catalyzes the final step of methanogenesis, suggested an enhanced methane production ability in present methanogens. In the termite Coptotermes chaohuensis, another methanogen-abundant insect species, hydrogen levels in gut and methane emission significantly increased after neonicotinoid treatment, which was similar to the results in P. americana. In summary, neonicotinoids changed bacterium community in P. americana gut to generate more hydrogen, which then stimulate gut methanogens to produce and emit more methane. The finding raised a new concern over neonicotinoid applications, and might be a potential environmental risk associated with global warming.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Marco Günthel ◽  
Daphne Donis ◽  
Georgiy Kirillin ◽  
Danny Ionescu ◽  
Mina Bizic ◽  
...  

AbstractRecent discovery of oxic methane production in sea and lake waters, as well as wetlands, demands re-thinking of the global methane cycle and re-assessment of the contribution of oxic waters to atmospheric methane emission. Here we analysed system-wide sources and sinks of surface-water methane in a temperate lake. Using a mass balance analysis, we show that internal methane production in well-oxygenated surface water is an important source for surface-water methane during the stratified period. Combining our results and literature reports, oxic methane contribution to emission follows a predictive function of littoral sediment area and surface mixed layer volume. The contribution of oxic methane source(s) is predicted to increase with lake size, accounting for the majority (>50%) of surface methane emission for lakes with surface areas >1 km2.


2019 ◽  
Vol 56 (Special) ◽  
pp. 143-155
Author(s):  
SD Mohapatra ◽  
R Tripathi ◽  
Anjani Kumar ◽  
Suchismita Kar ◽  
Minati Mohapatra ◽  
...  

The insect problem is accentuated in intensive rice cropping where the insects occur throughout the year in overlapping generations. Over 800 insect species damaging rice in one way or another, although the majority of them do very little damage. In India, about a dozen of insect species are of major importance but the economic damage caused by these species varies greatly from field to field and from year to year. Insect pests cause about 10-15 per cent yield losses. Farmers lose an estimated average of 37% of their rice crop to insect pests and diseases every year. This review focuses on precision farming tools being used in rice pest and diseases management viz., forecasting model for real-time pest-advisory services, hyper-spectral remote sensing in pest damage assessment, computer-based decision support system, disruptive technologies (mobile apps).


2016 ◽  
Vol 2 (1) ◽  
pp. 37-42 ◽  
Author(s):  
J.M. Pino Moreno ◽  
A. Ganguly

In the present paper we have determined the fatty acid content of some edible insects of Mexico. A comparative analysis of the insect species studied in this research showed that caproic acid was present in a minimal proportion which ranged between 0.01 for Periplaneta americana (nymphs) and 0.06 (g/100 g, dry basis) for Euschistus strenuus. The highest proportion of caprilic acid (0.09) was found in Tenebrio molitor (adults). Atta sp. had the highest amount of capric acid (0.26). Polistes sp. was found to be rich in lauric acid (0.77) and for myristic acid it had the highest content (5.64). Dactylopius sp. and E. strenuus were rich in palmitic acid (14.89). Euschistus taxcoensis had the highest quantity of palmitoleic acid (12.06). Llaveia axin exhibited the highest quantity of stearic acid (22.75). Polistes sp. was found to be rich in oleic acid (38.28). The highest quantity of linoleic acid was observed in T. molitor (larvae) (10.89), and in L. axin the highest content of linolenic acid (7.82) was obtained. A comparison between the species under the present investigation revealed that, in general, the insects are poor in caproic, caprilic, capric, lauric, myristic, palmitoleic and linolenic acids, because the quantities were either minimal or could not be detected at all. They had moderate quantities of stearic, palmitic and linoleic acids and had high quantities of oleic acid. Finally it was concluded that although a particular insect species is unable to fulfil the total fatty acid need for a human, if consumed in combination they could definitely be able to supply a good amount of this highly valued nutrient.


2021 ◽  
Vol 285 ◽  
pp. 117237
Author(s):  
Haibo Bao ◽  
Haoli Gao ◽  
Jianhua Zhang ◽  
Haiyan Lu ◽  
Na Yu ◽  
...  

2003 ◽  
Vol 38 (2) ◽  
pp. 393-411 ◽  
Author(s):  
Soufiane Tahiri ◽  
Ali Messaoudi ◽  
Abderrahman Albizane ◽  
Mohamed Azzi ◽  
Mohamed Bouhria ◽  
...  

Abstract In this work, the ability of chrome shavings and of crust leather buffing dusts to remove dyes from aqueous solutions has been studied. Buffing dusts proved to be a much better adsorbent than chrome shavings for cationic dyes. The adsorption of anionic dyes is very important on two studied wastes. The pH has an obvious influence on the adsorption of dyes. Adsorption of cationic dyes is less favourable under acidic conditions (pH <3.5) and at high pH values (pH >10.5). The adsorption of anionic dyes on both adsorbents is more favourable under acidic conditions (pH <3). The adsorption on chrome shavings is improved by the use of finer particles. The kinetic adsorption was also studied. Adsorption isotherms, at the optimum operating conditions, were determined. Adsorption follows the Langmuir model. The isotherm parameters have been calculated. The column technique could be applied to treat significant volumes of solutions.


Bee World ◽  
1983 ◽  
Vol 64 (4) ◽  
pp. 163-168 ◽  
Author(s):  
J. B. Free ◽  
A. W. Ferguson ◽  
Susan Winfield

2016 ◽  
Vol 31 (1-2) ◽  
pp. 9-18 ◽  
Author(s):  
Zlatko Korunic

Despite numerous advantages of diatomaceous earth (DE), its use for direct mixing with grains to control stored-product insects remains limited because of some very serious obstacles and disadvantages. The main obstacles preventing a wider use of DEs for mixing with grain, such as health concerns, the reduction in bulk density, differences in insect species tolerance to the same DE formulation, the effects of grain moisture and temperature on the effectiveness against insects, the influence of various commodities on DE efficacy, the use of DEs in some other fields, and possible solutions for overcoming DE limitations during direct mixing with grains are described in this manuscript. The same attempts have been made to discover new ways of increasing significantly the effectiveness against insects when much lower concentrations are used for direct mixing with grains. If these newer enhanced formulations can respond to the existing limitations of diatomaceous earth, a wider utilization of diatomaceous earth may be expected to control stored-product insect pests.


1967 ◽  
Vol 2 (1) ◽  
pp. 119-128
Author(s):  
S. H. P. MADDRELL ◽  
J. E. TREHERNE

The organization of the perineurium in two insect species (Carausius morosus and Periplaneta americana) has been examined with the electron microscope. In both species this cellular layer has been found to possess an extensive system of tortuous channels between the lateral cell walls. These channels are open at the outer margin adjacent to the fibrous connective-tissue sheath, but appear to be closed at the inner margin by regions of septate desmosomes and/or ‘tight’ junctions. There is an increased surface area at the inner margin of the perineurial cells produced by the presence of long inwardly directed flanges. An electron-dense coat has also been identified on the cytoplasmic side of the type II perineurial cell membranes at points of contact with the underlying extracellular system and at the outer surface adjacent to the connective-tissue sheath. This organization of the perineurium is strikingly similar to that observed in a variety of fluid-secreting epithelia and its possible function in fluid transport is discussed in relation to the available evidence on the physiology of the insect central nervous system. It is suggested, contrary to some earlier suppositions, that the perineurium may not be primarily involved in the control of the extracellular sodium level and that this regulation may be effected at a deeper level in the central nervous tissues.


A survey was conducted to investigate rice storage practices at the farmer’s level and the prevalence of insects’ status through a pretested questionnaire in Mymensingh and Jashore districts, Bangladesh. For seed purposes, large, medium, and small farmers store about 40, 10, and 5 kg, respectively in the Aman season for 7 months whereas in the Boro season large and medium farmers keep about 80 and 20 kg for 5 months. Average storage time was the highest (7 months) for Boro and Aman rice by large and small farmers, respectively for consumption. Eleven storage items namely, Dole, Motka, Tin, Plastic Drum, Gunny Bag, Bamboo Gola, Dhari, Bamboo Auri, Berh, Steel Drum, and Plastic Bag were found. About 57 and 74% of farmers stored rice, among them 47 and 58% used traditional Dole in Jashore and Mymensingh, respectively. Tin and Berh (1%) were the least used storage structures. About 11 and 17%; 3 and 4% of farmers used neem leaf and chemicals especially phostoxin in storage as an insect repellent in these areas, respectively. The use of Plastic Bags increased sharply due to lightweight, availability, and low price, whereas Bamboo Gola, Berh, Motka users decreased remarkably. Relative abundance of the insect species was: Rice Moth Sitotroga cerealla, Rice Weevil Sitophilus oryzae, Red Flour Beetle Tribolium castoreum, and Lesser Meal Worm Alphitobious diaperinus. Maximum insect infestation was found in stored paddy in Dole followed by Motka, and Plastic Bag; and the least amount was observed in Plastic Drum in both regions. Three fourth of the respondents took no measures to control insect pests in stored rice.


Sign in / Sign up

Export Citation Format

Share Document