scholarly journals Eye-head coordination and dynamic visual scanning as indicators of visuo-cognitive demands in driving simulator

Author(s):  
Laura Mikula ◽  
Sergio Mejía-Romero ◽  
Romain Chaumillon ◽  
Amigale Patoine ◽  
Eduardo Lugo ◽  
...  

AbstractDriving is an everyday task involving a complex interaction between visual and cognitive processes. As such, an increase in the cognitive and/or visual demands can lead to a mental overload which can be detrimental for driving safety. Compiling evidence suggest that eye and head movements are relevant indicators of visuo-cognitive demands and attention allocation. This study aims to investigate the effects of visual degradation on eye-head coordination as well as visual scanning behavior during a highly demanding task in a driving simulator. A total of 21 emmetropic participants (21 to 34 years old) performed dual-task driving in which they were asked to maintain a constant speed on a highway while completing a visual search and detection task on a navigation device. Participants did the experiment with optimal vision and with contact lenses that introduced a visual perturbation (myopic defocus). The results indicate modifications of eye-head coordination and the dynamics of visual scanning in response to the visual perturbation induced. More specifically, the head was more involved in horizontal gaze shifts when the visual needs were not met. Furthermore, the evaluation of visual scanning dynamics, based on time-based entropy which measures the complexity and randomness of scanpaths, revealed that eye and gaze movements became less explorative and more stereotyped when vision was not optimal. These results provide evidence for a reorganization of both eye and head movements in response to increasing visual-cognitive demands during a driving task. Altogether, these findings suggest that eye and head movements can provide relevant information about visuo-cognitive demands associated with complex tasks. Ultimately, eye-head coordination and visual scanning dynamics may be good candidates to estimate drivers’ workload and better characterize risky driving behavior.

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0240201
Author(s):  
Laura Mikula ◽  
Sergio Mejía-Romero ◽  
Romain Chaumillon ◽  
Amigale Patoine ◽  
Eduardo Lugo ◽  
...  

Driving is an everyday task involving a complex interaction between visual and cognitive processes. As such, an increase in the cognitive and/or visual demands can lead to a mental overload which can be detrimental for driving safety. Compiling evidence suggest that eye and head movements are relevant indicators of visuo-cognitive demands and attention allocation. This study aims to investigate the effects of visual degradation on eye-head coordination as well as visual scanning behavior during a highly demanding task in a driving simulator. A total of 21 emmetropic participants (21 to 34 years old) performed dual-task driving in which they were asked to maintain a constant speed on a highway while completing a visual search and detection task on a navigation device. Participants did the experiment with optimal vision and with contact lenses that introduced a visual perturbation (myopic defocus). The results indicate modifications of eye-head coordination and the dynamics of visual scanning in response to the visual perturbation induced. More specifically, the head was more involved in horizontal gaze shifts when the visual needs were not met. Furthermore, the evaluation of visual scanning dynamics, based on time-based entropy which measures the complexity and randomness of scanpaths, revealed that eye and gaze movements became less explorative and more stereotyped when vision was not optimal. These results provide evidence for a reorganization of both eye and head movements in response to increasing visual-cognitive demands during a driving task. Altogether, these findings suggest that eye and head movements can provide relevant information about visuo-cognitive demands associated with complex tasks. Ultimately, eye-head coordination and visual scanning dynamics may be good candidates to estimate drivers’ workload and better characterize risky driving behavior.


Author(s):  
Jinmo Lee ◽  
Neska Elhaouij ◽  
Rosalind Picard

To promote calm breathing inside a car, we designed a just-in-time breathing intervention stimulated by multi-sensory feedback and evaluated its efficacy in a driving simulator. Efficacy was measured via reduction in breathing rate as well as by user acceptance and driving safety measures. Drivers were first exposed to demonstrations of three kinds of ambient feedback designed to stimulate a goal breathing rate: (1) auditory (rhythmic background noise), (2) synchronized modulation of wind (dashboard fans modulating air pointed toward the driver) together with auditory, or (3) synchronized visual (ambient lights) together with auditory. After choosing one preference from these three, each driver engaged in a challenging driving task in a car simulator, where the ambient stimulation was triggered when their breathing exceeded a goal rate adapted to their personal baseline. Two user studies were conducted in a car simulator involving respectively 23 and 31 participants. The studies include both manual and autonomous driving scenarios to evaluate drivers' engagement in the intervention under different cognitive loads. The most frequently selected stimulation was the combined auditory and wind modalities. Measures of changes in breathing rate show that the participants were able to successfully engage in the breathing intervention; however, several factors from the driving context appear to have an impact on when the intervention is or is not effective.


Author(s):  
Zhuofan Liu ◽  
Wei Yuan ◽  
Yong Ma

The distribution of drivers’ visual attention prior to diverting focus from the driving task is critical for safety. The object of this study is to investigate drivers’ attention strategy before they occlude their vision for different durations under different driving scenarios. A total of 3 (scenarios) × 3 (durations) within-subjects design was applied. Twenty-three participants completed three durations of occlusion (0, 1, and 2 s) test drive in a motion-based driving simulator under three scenarios (urban, rural, motorway). Drivers’ occlusion behaviour, driving behaviour, and visual behaviour in 6 s before occlusion was analyzed and compared. The results showed that drivers tended to slow down and increased their attention on driving task to keep safety in occlusion 2 s condition. The distribution of attention differed among different driving scenarios and occlusion durations. More attention was directed to Forward position and Speedometer in occlusion conditions, and a strong shift in attention from Forward position to Road users and Speedometer was found in occlusion 2 s condition. Road users was glanced more frequently in urban road with a higher percentage of attention transitions from Forward position to Road users. While gaze switching to Speedometer with a higher intensity was found on motorway. It suggests that drivers could adapt their visual attention to driving demand and anticipate the development of upcoming situations by sampling enough driving-related information before eyes-off-road. Moreover, the adaptation and anticipation are in accordance with driving situation and expected eyes-off-road duration. Better knowledge about attentional strategies before attention away from road contributes to more efficient and safe interaction with additional tasks.


Author(s):  
R. Wade Allen ◽  
Zareh Parseghian ◽  
Anthony C. Stein

There is a large body of research that documents the impairing effect of alcohol on driving behavior and performance. Some of the most significant alcohol influence seems to occur in divided attention situations when the driver must simultaneously attend to several aspects of the driving task. This paper describes a driving simulator study of the effect of a low alcohol dose, .055 BAC (blood alcohol concentration %/wt), on divided attention performance. The simulation was mechanized on a PC and presented visual and auditory feedback in a truck cab surround. Subjects were required to control speed and steering on a rural two lane road while attending to a peripheral secondary task. The subject population was composed of 33 heavy equipment operators who were tested during both placebo and drinking sessions. Multivariate Analysis of Variance showed a significant and practical alcohol effect on a range of variables in the divided attention driving task.


PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e77294 ◽  
Author(s):  
Rocío Prado Vega ◽  
Peter M. van Leeuwen ◽  
Elizabeth Rendón Vélez ◽  
Hans G. Lemij ◽  
Joost C. F. de Winter

Author(s):  
Patrick Siebert ◽  
Mustapha Mouloua ◽  
Kendra Burns ◽  
Jennifer Marino ◽  
Lora Scagliola ◽  
...  

This study used both cellular phones and analogue radio to measure driver distraction and workload in a low fidelity driving simulator. Thirty-four participants performed a simulated driving task while using either a cell phone or a radio in conjunction with a secondary task assessing their spare attentional capacity. The results showed that more lane deviations were made during the cell phone and radio tuning use than both of the pre-allocation and Post-allocation phases. The secondary task errors were also higher during both the cell phone and radio tuning allocation phase than the pre-allocation and post-allocation phases. These findings indicate the greater workload load levels associated with the use of telemetric devices. These findings have major implications for driver safety and telemetric systems design.


2021 ◽  
Author(s):  
Vishnu Radhakrishnan ◽  
Natasha Merat ◽  
Tyron Louw ◽  
Rafael Goncalves ◽  
Wei Lyu ◽  
...  

This driving simulator study, conducted as a part of Horizon2020-funded L3Pilot project, investigated how different car-following situations affected driver workload, within the context of vehicle automation. Electrocardiogram (ECG) and electrodermal activity (EDA)-based physiological metrics were used as objective indicators of workload, along with self-reported workload ratings. A total of 32 drivers were divided into two equal groups, based on whether they engaged in a non-driving related task (NDRT) during automation or monitored the drive. Drivers in both groups were exposed to two counterbalanced experimental drives, lasting ~18 minutes each, of Short (0.5 s) and Long (1.5 s) Time Headway conditions during automated car-following (ACF), which was followed by a takeover that happened with or without a lead vehicle. We observed that the workload on the driver due to the NDRT was significantly higher than both monitoring the drive during ACF and manual car-following (MCF). Furthermore, the results indicated that shorter THWs and the presence of a lead vehicle can significantly increase driver workload during takeover scenarios, potentially affecting the safety of the vehicle. This warrants further research into understanding safe time headway thresholds to be maintained by automated vehicles, without placing additional mental or attentional demands on the driver. To conclude, our results indicated that ECG and EDA signals are sensitive to variations in workload, and hence, warrants further investigation on the value of combining these two signals to assess driver workload in real-time, to help the system respond appropriately to the limitations of the driver and predict their performance in driving task if and when they have to resume manual control of the vehicle.


Author(s):  
Steven W. Savage ◽  
Lily Zhang ◽  
Garrett Swan ◽  
Alex R. Bowers

Objective We conducted a driving simulator study to investigate scanning and hazard detection before entering an intersection. Background Insufficient scanning has been suggested as a factor contributing to intersection crashes. However, little is known about the relative importance of the head and eye movement components of that scanning in peripheral hazard detection. Methods Eleven older (mean 67 years) and 18 younger (mean 27 years) current drivers drove in a simulator while their head and eye movements were tracked. They completed two city drives (42 intersections per drive) with motorcycle hazards appearing at 16 four-way intersections per drive. Results Older subjects missed more hazards (10.2% vs. 5.2%). Failing to make a scan with a substantial head movement was the primary reason for missed hazards. When hazards were detected, older drivers had longer RTs (2.6s vs. 2.3s), but drove more slowly; thus, safe response rates did not differ between the two groups (older 83%; younger 82%). Safe responses were associated with larger (28.8° vs. 20.6°) and more numerous (9.4 vs. 6.6) gaze scans. Scans containing a head movement were stronger predictors of safe responses than scans containing only eye movements. Conclusion Our results highlight the importance of making large scans with a substantial head movement before entering an intersection. Eye-only scans played little role in detection and safe responses to peripheral hazards. Application Driver training programs should address the importance of making large scans with a substantial head movement before entering an intersection.


Author(s):  
Edward Downs

A pre-test, post-test experiment was conducted to determine if using a popular racing game on a PlayStation® 3 video game console could change a player's intent to drive distracted. Results indicated that those who were driving distracted (texting or talking) in a video game driving simulator had significantly more crashes, speed violations, and fog-line crossings than those in a non-distracted driving control group. These findings are consistent with predictions from the ACT-R cognitive architecture and threaded cognition theory. A follow-up study manipulated the original protocol by establishing a non-distracted baseline for participants' driving abilities as a comparison. Results demonstrated that this manipulation resulted in a significantly stronger change in attitude against driving distracted than in the original procedure. The implications help to inform driving safety programs on proper protocol for the use of game consoles to change attitudes toward distracted driving.


Author(s):  
James Unverricht ◽  
Yusuke Yamani ◽  
Jing Chen ◽  
William J. Horrey

Objective The present study examines the effect of an existing driver training program, FOrward Concentration and Attention Learning (FOCAL) on young drivers’ calibration, drivers’ ability to estimate the length of their in-vehicle glances while driving, using two different measures, normalized difference scores and Brier Scores. Background Young drivers are poor at maintaining attention to the forward roadway while driving a vehicle. Additionally, drivers may overestimate their attention maintenance abilities. Driver training programs such as FOCAL may train target skills such as attention maintenance but also might serve as a promising way to reduce errors in drivers’ calibration of their self-perceived attention maintenance behaviors in comparison to their actual performance. Method Thirty-six participants completed either FOCAL or a Placebo training program, immediately followed by driving simulator evaluations of their attention maintenance performance. In the evaluation drive, participants navigated four driving simulator scenarios during which their eyes were tracked. In each scenario, participants performed a map task on a tablet simulating an in-vehicle infotainment system. Results FOCAL-trained drivers maintained their attention to the forward roadway more and reported better calibration using the normalized difference measure than Placebo-trained drivers. However, the Brier scores did not distinguish the two groups on their calibration. Conclusion The study implies that FOCAL has the potential to improve not only attention maintenance skills but also calibration of the skills for young drivers. Application Driver training programs may be designed to train not only targeted higher cognitive skills but also driver calibration—both critical for driving safety in young drivers.


Sign in / Sign up

Export Citation Format

Share Document